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1 Introduction

We consider the contribution of climate to the total market output of United States (US)

counties. Empirical construction of these values is challenging because it requires simulta-

neously accounting for all unobservable differences between counties (Deschênes and Green-

stone, 2007) and all endogenous adaptations to climate net of costs (Schlenker, Roberts, and

Lobell, 2013)—criteria that no prior approach has yet delivered (Hsiang, 2016). Here we de-

velop a single unified framework that satisfies both of these criteria for an arbitrary number

of unobserved allocative adaptations in an economy at general equilibrium responding to a

high-dimensional climate. We show that our approach can recover the marginal product of

climate by using only idiosyncratic weather variation and a reduced-form estimator.

It is well known that the short-run income response to weather and the long-run income

response to climate are not the same mathematical object, due to possible adaptive re-

optimization (Mendelsohn, Nordhaus, and Shaw, 1994; Kelly, Kolstad, and Mitchell, 2005).

Our core insight is that the marginal effect of weather, suitably defined, is nonetheless

exactly equal to the marginal effect of climate on total output when an economy is in com-

petitive equilibrium. This equality holds locally because the two surfaces that describe the

weather-income and climate-income relationships are exactly tangent in the neighborhood

of the equilibrium allocation. The surfaces are tangent because no adaptive reallocation

occurs due to short-run idiosyncratic weather fluctuations, by definition, and because the

effect of any marginal adaptation on income in the long-run is exactly zero as a result of

the Envelope Theorem (e.g. Guo and Costello, 2013). Thus, in neither the weather-income

nor the climate-income case are local marginal effects influenced by adaptive behavior.

The equivalence between the marginal effects of climate and the marginal effects of

weather enables us to measure the local gradient of the long-run relationship implicitly by

directly measuring the local gradient of the short-run relationship. The short-run response

can be empirically identified by exploiting idiosyncratic variations in weather over time

within each location, enabling the removal of unobserved cross-sectional heterogeneity from

parameter estimates (Deschênes and Greenstone, 2007). A large number of local gradient

estimates observed at “nearby” baseline climates can then be “pieced together” through

integration to reconstruct the long-run income response surface, which cannot otherwise

be observed directly. The key data requirements necessary for this approach to be valid

is a large panel of similar economies that (i) span the space of possible climates, which we

define precisely below, (ii) are sufficiently densely packed in this space such that integration

between positions is reasonable, and (iii) experience short-run weather disturbances that

are not “too large” in the sense that they do not perturb the economy so far from its

equilibrium that the Envelope Theorem no longer applies.

We demonstrate the application of this approach using a large number of ‘small macro-
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economies’ represented by the panel of modern US counties, which plausibly satisfy the crite-

ria above. We examine counties’ local income response to small perturbations in the annual

distribution of daily temperatures and discover a remarkably strong and stable relationship

between temperatures and production across space, seasons, and time. Importantly, we

show that investments in human-made capital—in the form of air conditioning and cities—

appear to be partial substitutes for climate in production, in the sense of Hartwick (1977)

and Solow (1991). However, we continue to observe large contributions of climate to output

even in extremely urbanized contexts and in the twenty-first century, indicating a high net

value of certain climates despite the existence of numerous possible margins of adaptation.

Our approach enables us to integrate marginal effects of climate to compute causal ef-

fects on production due to non-marginal climate changes. Thus, we can compute differences

in economic production that are attributable to differences in contemporaneous locations’

climates, as well as to estimate changes in future production due to projected future warm-

ing, holding technology constant. In both cases, our estimates account for both the costs

and benefits of all margins of endogenous adaptation. On net, we find that existing climate

differences between counties generate substantial differences in their output, with hotter

climates having lower average production, ceteris paribus, a result that we recover without

exploiting cross-sectional variation in estimation of our parameters. For example, we esti-

mate that the climate of Northern Minnesota returns over $2,000 per capita more annually

than the climate of Southern Texas. For similar reasons, projections of future output are

substantially reduced once future warming and resulting adaptation are both accounted for.

Net of all currently available adaptation technologies, we estimate the value of projected

changes in US production due to warming during the twenty-first century at -$6.7 trillion in

net present value (US 2011 dollars, RCP8.5, discounted at 3% annually) in the median sce-

nario, using our preferred specification. The 90% confidence interval of this loss is $4.7-10.4

trillion when accounting for climate model uncertainty (Burke et al., 2015).1

An ancillary but potentially important insight from our empirical work is that accounting

for adaptive reallocations increases total projected losses under warming relative to an

approach that assumes uniform marginal effects everywhere. This result is counter to the

widely referenced “folk theorem” that accounting for endogenous adaptation empirically

should necessarily reduce the estimated impacts of climate change. In our context, we find

the marginal damages from warming—which are larger for cooler and less adapted northern

counties—are positively correlated across space with the distribution of economic activity.

Thus, models that assume uniform marginal effects under-estimate future losses because

1It should be noted that these values do not represent welfare calculations, nor do they account for non-
market impacts of warming. They also do not include effects of climate change through non-temperature
channels (e.g., floods), and they clearly cannot account for possible future technological innovations that do
not yet exist in our data.
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marginal damage estimates for northern locations are biased toward zero by pooling them,

in estimation, with hotter and more adapted (but less productive) southern counties.

The structure of the paper is as follows. In Section 2, we introduce definitions for climate,

the space of all possible climates, the marginal product of climate, the role of climate in

a market equilibrium, and the relationship between climate and weather. In Section 3 we

derive how the marginal product of climate can be estimated using weather variation and

how these estimates can be used to compute non-marginal effects of climate. In Section

4 we explain our empirical implementation in the modern US, deriving how we recover

the marginal product of high-dimensional daily temperature distributions. In Section 5

we examine the structure of the marginal product of temperature in the US, including its

stability over time, the dynamics of income growth, and the effects of adaptation. In Section

6 we examine what mechanisms might be responsible for these results, considering both

different sectors of production (e.g. agriculture, manufacturing) and the role of human-made

capital (e.g. air-conditioning) as partial substitutes for climate in production. In Section 7

we use our results to compute the non-marginal effects of temperature on the current cross-

section of income and the projected value of future warming. Section 8 discusses important

caveats of our analysis and points towards areas for future research.

2 Theoretical setup and statement of the problem

To quantify the full marginal product of a climate, we must compute the economic value

generated by an economy facing that climate relative to the same economy when it faces a

slightly different climate, including the costs and benefits of any adaptation measures taken

in response. Accounting for the benefits of adaptation is relatively straightforward, since

the reduced sensitivity of populations is directly observable (e.g. Barreca et al., 2016), but

accounting for adaptation costs has remained a persistent challenge because they are not

directly observed (Carleton and Hsiang, 2016). The costs of any adaptive measures that

require resources (e.g. capital) are the opportunity costs of allocating those resources to

other economic opportunities. Systematically enumerating these costs may be challenging

or impossible, since there is a vast number of adjustments populations make when adapting

to their climate. We point out here that in general equilibrium, all of these adaptations

can simply be thought of as allocation decisions made conditional on the climate, and their

total opportunity cost to the market is therefore the loss of total revenue relative to an

alternative allocation. Thus, it is not necessary to enumerate these costs individually to

capture their total, so long as we observe changes in total revenue in response to climate.

We begin by first defining what we mean by the word “climate.” Much of the prior

economics literature considers this definition to be self-evident, but numerous debates have

stemmed from disagreements about what this language represents mathematically. We
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therefore provide a precise definition for climate. Our definition is novel in its articulation

but we believe it both reflects and subsumes most prior conceptions and is consistent with

colloquial understanding of the term. It also leads naturally to a corresponding definition of

the term “weather,” reflecting the notion that “the climate is what you expect, the weather

is what you get.”2 These mathematical definitions are essential to our approach because

they guarantee that climate and weather have the same dimensionality, lie in the same

sub-regions of a vector-space, and can be mapped to data.

2.1 Defining climate and its marginal product

The climate of a location describes the joint probability distribution over a large number

of possible environmental conditions that may occur at that location over a period of time.

Because this distribution is a function, the transformation of climate and other inputs into

economic output (a scalar) must be mapped through a functional.3 The challenge of our

analysis is to find a suitable framework for transforming this functional into an empirically

tractable object while also accounting for endogenous adaptation to any changes in climate.

Let relevant environmental state variables at location i, observed continuously in time

τ , be represented by the random vector x:

xiτ = [temperatureiτ , precipitationiτ , humidityiτ , ...] , (1)

where xiτ is a draw from the joint probability distribution function fx(.). We are interested

in how changes to this function alter the economic value of output in a given economy.

Assume a functional that maps this function to scalar economic output Ỹ exists:

fx(.) 7→ Ỹ (fx(.),b), (2)

where b is a vector of length N that describes all endogenous control variables in the

economy, including the allocation of all inputs not described by x. Alteration of these

control variables is how the economy may adapt to changes in fx(.). Define Ψ to be the

function space of physically valid probability distribution functions over x, i.e. fx(.) ∈ Ψ.

To make the characterization of (2) empirically tractable, we exploit a smooth “function-

generating function” ψ(.) that describes the entire function4 fx(.) in terms of a vector C:

C 7→ ψ(C) = fx(.). (3)

2This quote is has been attributed to M. Twain and R. Heinlein, although its true origins are unclear.
3A functional is similar to a function, but takes functions (rather than scalars or vectors) as arguments

and outputs a scalar. A definite integral is a commonly used functional.
4Note that ψ(.) may be set-valued such that it generates a set of functions fx(.) for each vector C. This

is not a concern for us here because each function fx(.) will still have a well-defined inverse C.
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Output from ψ(.) must always be a probability distribution. ψ(.) must also be sufficiently

structured such that it reconstructs all economically relevant features of fx(.) based on C.

For example, if physics constrained Ψ to be the family of univariate Normal distributions

over x, then C would simply contain a mean and variance and ψ(C) would translate these

values into a function over x.

Let the vector C have length K and lie in the space C ⊆ RK . C is defined such that

C ∈ C ⇐⇒ ψ(C) ∈ Ψ. That is, for any position C in the space C, there exists a valid

probability distribution over x generated by ψ(C). Thus, we can rewrite Ỹ (fx(.),b) =

Ỹ (ψ(C),b) = Y (C,b) where the notation Y (.) simply embeds ψ(.) in Ỹ (.). The purpose of

ψ(.) in this formulation is that its inverse maps from the function space Ψ, which is difficult

to handle empirically as the domain of an independent variable, to the vector space C. This

allows us to substitute the functional Ỹ (.) with the more manageable function Y (.).

By construction, the vector C is sufficient to describe all economically relevant features

of fx(.). We therefore define C as the climate. Correspondingly, C is the space of possible

climates. Our objective is to define and measure the economic value of relocating an econ-

omy within this space. To describe the value of such relocations, we define the marginal

product of climate evaluated at location C0 in C to be

dY (C0,b
∗
0)

dC
= lim

C′→0

[
Y (C0 + C′,b∗0 + b∗′)− Y (C0,b

∗
0)

C′

]
, (4)

where the vectors b∗0 and b∗0 + b∗′ are endogenously adjusted to adapt the economy to the

two climates C0 and C0 +C′, respectively. We next discuss such adaptations in more detail.

2.2 Adaptation to climate in general equilibrium

Assume a competitive market equilibrium with complete information where C affects en-

dowments, productivities, and utility (Arrow and Debreu, 1954). Firms rent labor and sell

output to rational consumers according to a price-vector p = p(C), which may depend on

the climate. All agents know their climate C and adjust their behavior and factor alloca-

tions to it independently. As mentioned earlier, the vector b describes all control variables

available to decision-makers, including production, consumption, and investment. Aggre-

gate utility U(C,b) then depends on b and may also depend on C. Individual firms are

price-takers and unable to alter U(C,b). They observe C and p(C), then produce output

in a decentralized manner until some equilibrium b∗ is achieved.

Denote the economy’s production possibility frontier as PPF (C,b), which directly de-

pends on C if the climate affects what output is feasible and indirectly depends on C

through adaptations via b. The equilibrium allocation, which incorporates all endogenous

adjustments to the climate, is then b∗ = b∗(C). To ensure that b∗ exists, we assume that

b lies in a space B, a dense subset of RN . Further, we make the usual assumption that Y
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b1

p(C)

Y(C,b*)

b*(C)

U(C,b)

production possibility set

better-than set

PPF(C,b)

b2

b1

Y(C2,b*)b*(C1)

Y(C1,b*)

b*(C2)

Figure 1: General equilibrium in a climate C. Left: the equilibrium allocation is b∗(C)
with endogenous price vector p and total market revenue (income) Y . Right: The climate
of an economy is altered from C1 to C2, producing a new optimal allocation b∗(C2) and
changing both the price vector and total revenue Y .

is concave and differentiable in b. Under the conditions stated above, Koopmans (1957)

shows that the equilibrium allocation b∗(C) must maximize total market revenue in the

economy if it also maximizes aggregate utility, so long as prices are nonzero:

b∗(C) = arg max
b

Y (C,b(C)) | p(C), U(C,b). (5)

Thus, as far as market revenue is concerned, all costs of adaptation to climate are opportu-

nity costs due to the re-allocation of resources in response to changes in C. If an exogenous

change in the climate induces an endogenous adjustment in b∗, then it must be the case

that any reductions in Y caused by this adjustment were outweighed by the gains.

Figure 1 illustrates an example economy where b = (b1, b2). Both b1 (an input to

production as drawn) and b2 (an output and the numeraire) are endogenously determined.

U(C,b) and PPF (C,b) may be influenced by climate and total market revenue Y(C,b∗) is

maximized given prices (left panel). If the climate C changes from C1 to C2 (right panel),

both the production possibility set and the better-than set may change. The economy

will adapt to C2 by reallocating factors from b∗(C1) to b∗(C2). This reallocation will

again maximize total revenue Y in the economy given the new price vector. The marginal

product of climate thus implicitly captures all of these adaptive factor reallocations, but

measuring it does not require that we observe b∗ or p directly. Rather, we simply observe

how total revenue Y—the intercept of the separating hyper-plane with the numeraire’s axis

(b2)—responds to changes in C net of these endogenous changes (right panel).
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This formulation of adaptation is general in the sense that it accounts for an arbitrary

number of endogenous adjustments to climate while allowing for the possibility that C

affects the economy by altering the better-than set and the PPF simultaneously. For ex-

ample, on the production side, increasing temperatures might reduce the yields of some

crops, altering the structure of the PPF and causing adjustment in the allocation of land

to different crop varieties or the more intensive use of irrigation, both of which are accom-

panied by the opportunity cost of using those resources for other productive activities. On

the preferences side, increasing temperatures might increase the demand for ice cream and

reduce the demand for hot chocolate, a response that would lead to some reallocation of

both production and consumption.

If some factors have no market price, such as a completely externalized pollutant or a

non-market good, they will not be factored into market-based decisions and will not affect

total revenue. This is not an immediate concern for us because we are focused on changes

to total market output, although it is worth noting explicitly that our approach does not

capture non-market responses to climate and does not necessarily correspond to welfare.5

Because our focus is the value of the climate in terms of total market production net of

all endogenous adjustments, it is helpful to write equilibrium output as the value function

V (C) = Y (C,b∗(C)), (6)

which captures the net costs and benefits of all possible adaptations embodied by b∗. If

there exist regions in the space C where endogenous adjustment of b can fully offset any

changes in total production induced by changes in C, then the value function V (C) will

be flat in that region. However, if compensating adjustments in b are not cost-effective or

unfeasible, then V (C) may have a steeper gradient that reflects the direct effect of C on Y .

An important assumption above is that the elements of b can take on continuous values.

This is a natural assumption for most quantities in an economy of sufficiently large scale,

such as the number of apples sold in a regional market or the miles of road laid down within

a county. Although, in some cases often discussed as margins of adaptation to climate,

such as the construction of sea-walls or crop-switching, these decisions are often framed as

discrete. However, such a framing oversimplifies adaptive decisions by actual individuals

because these decisions have (continuous) intensive margins. For example, a sea-wall can

always be slightly longer or slightly higher and a farmer can always allocate a slightly larger

fraction of cropland to a new variety. At larger scales of aggregation, such as a county, the

assumption that elements of b takes on continuous values is strongly defensible, as many

discrete economic decisions of many individuals are aggregated into continuous measures.

5Examples of two alternative approaches that take into account both market and non-market responses
to climate include Anthoff, Hepburn, and Tol (2009) and Hsiang et al. (2017).
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2.3 Weather and climate

Once agents use their knowledge of C to adjust b, there remain no possible channels for the

probability distribution characterized by C to affect the economy except through realiza-

tions of xiτ . A climate that is generally wet will generate more rainy minutes and a climate

that is generally warm will generate more hot minutes. These actual events may affect Y ,

with effects possibly mediated by b∗(C). We now describe the connection between xiτ and

what people colloquially refer to as “weather.” It is tempting to label xiτ the weather, but

elements in xiτ are continuous measures taken at continuous moments in time indexed by τ .

By contrast, the term “weather” typically summarizes values of xiτ observed over a longer

time period, such as a day or month. We formalize this idea below.

Having observed some realizations of xiτ over the time interval t = [τ , τ), we can con-

struct an empirical cumulative distribution function F̂x(.)it over these observations. Differ-

entiating F̂x(.)it gives us f̂x(.)it, an empirical analog to the probability density fx(.), which

also must lie in the space Ψ. Noting that the function-generating function ψ(.) can also

generate f̂x(.)it, we define cit as an empirical analog to C for location i during interval t:

cit 7→ ψ(cit) = f̂x(.)it. (7)

By construction, cit has the same dimensionality as C and also lies in C. Put simply, cit

summarizes the empirical distribution of many measures of xiτ taken over a finite interval

of time. We define cit as the weather realized at i during period t.

We argue that this formal definition of cit maps very closely to common usages of the

term “weather.” For example, if one were to ask “What was today’s weather?”, nobody

would reply by describing xiτ directly—doing so would involve reporting a massive vector

of temperatures and other variables experienced during every moment in the day. A more

natural response would be to summarize all that information by describing its distribution as

“pretty warm,” or “a high of 80◦F and low of 60◦F.” Such summary statements correspond

to the elements in cit. After being told such summaries, it is then natural for individuals

to reconstruct in their mind what a day might actually look like, i.e. the distribution of

xiτ ’s they might experience on that day. This reconstruction procedure, taking place in the

mind of an economic agent, is the transformation described by ψ(.).

Because C summarizes the probability distribution function fx(.), which produces re-

alizations xiτ that are in turn used to construct cit, it is straightforward to reformulate

cit’s as random vectors generated by some function of C. Stated another way, weather is a

random realization of events that are determined by the climate. To capture this intuition

and simplify notation, below we refer to weather realizations c determined by C as c(C).
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2.4 The marginal product of climate as the gradient of the value function

As suggested above, the probability distribution described by the climate C can only affect

economic production in two ways: (1) as information, through its effect on beliefs and

subsequent economic decisions embodied by b∗, and (2) through its influence on weather

realizations c, which in turn directly affect economic outcomes. Following Hsiang (2016),

we term these pathways the belief effect and the direct effect, respectively, and we rewrite

Eq. 6 to explicitly acknowledge that c(.) is the only pathway of influence other than b(.):

V (C) = Y (c(C),b∗(C)). (8)

The shape of this income-generating function Y (.) along the optimized path b∗(C) over all

C ∈ C ultimately determines the value of climate V (C). Thus, the full marginal product of

the climate at C can be rewritten from Eq. 4 as the local gradient in the value function

dY (c(C),b∗(C))

dC
=

dV (C)

dC
= lim

C′→0

[
V (C + C′)− V (C)

C′

]
, (9)

where C′ describes the structure of an arbitrary perturbation to the current climate vector

C such that C + C′ ∈ C. Recovering the gradient vector dV (C)
dC for counties in the modern

United States is the goal of our empirical analysis below.

2.5 Relationship to prior work

Our analysis generalizes and bridges several previous innovative efforts to empirically mea-

sure the economic impact of climatic conditions (a complete discussion is in the Appendix).

Cross-sectional analyses of farms by Mendelsohn, Nordhaus, and Shaw (1994) and Schlenker,

Hanemann, and Fisher (2006) estimated analogs of Equation 8 with C being captured by

long-run averages, the former using simple averages of temperatures and rainfall and the

latter utilizing degree-days. Deschênes and Greenstone (2007) raised the concern that un-

observable heterogeneity across farms might introduce bias to these estimate, and proposed

differencing out these effects using a within-unit panel regression approach. However, this

strategy required the assumption that climate can be proxied by observed average weather

(Ĉ = cit). Such assumptions have subsequently been widely challenged because economic

agents adapt to their climate, adjusting b∗(C), but do not adapt to weather. Later work

explored the nature of such adaptation in multiple ways: Schlenker and Roberts (2009);

Aroonruengsawat and Auffhammer (2011); Hsiang and Narita (2012) and others showed

that historical experience with climates altered the marginal impact of weather; Deschênes

and Greenstone (2011); Barreca et al. (2016) and others showed how specific technologies

have mitigated effects of weather; Dell, Jones, and Olken (2012); Burke and Emerick (2016)

and others showed that the scope for adaptation may sometimes be limited even over longer
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periods; and Schlenker, Roberts, and Lobell (2013); Houser et al. (2015) and others point

to the importance of accounting for both costs and benefits of adaptation.

Thus, the literature is overall in broad agreement that (i) climate and weather are

different objects, (ii) long-run climates are correlated with unobservable heterogeneity that

hinders direct empirical inference in cross-sections, (iii) adaption to climate may generate

important differences between the effects of climate and weather, and (iv) the costs and

benefits of adaptation must both be accounted for in valuations. Yet to date, no formulation

has accounted for all of these concerns in a single empirical framework. Below we show how

the market value of climate—purged of bias from unobservable heterogeneity and accounting

for both the costs and benefits of adaptation—can be empirically recovered by exploiting

weather variation and a within-unit panel estimator.

3 Identifying the full marginal product of climate empirically

As formulated here, an economy’s output Y depends on its position in theK+N dimensional

space C×B. Exogenous changes in the position of the economy C ∈ C lead to endogenous re-

optimization of control variables b ∈ B such that, in the long run, income Y (c(C),b∗(C)) =

V (C) is at an optimum with respect to the subspace B. A core empirical challenge has been

tracing out the path of an economy through C × B as it adjusts b∗ in response to changes

in C. To that end, our objective is to characterize the marginal product of climate6 along

this path:
dV (C)

dC
=
[
∂V (C)
∂C1

, · · · , ∂V (C)
∂CK

]
, (10)

where Ck denotes the k-th element in C. To characterize dV (C)
dC empirically, we decompose it

into contributions that come from (1) the direct effect of changing C on weather realizations

c (direct effect) and (2) the endogenous adjustment of b in response to the knowledge or

belief that C has changed (belief effect):

dV (C)

dC
=

dY (c(C),b∗(C))

dC
=

K∑
k=1

∂Y

∂ck

dck
dC︸ ︷︷ ︸

direct effects

+
N∑
n=1

∂Y

∂bn

db∗n
dC︸ ︷︷ ︸

belief effects

, (11)

where dck
dC and dbn

dC are the k-th and n-th row vectors of Jacobians dc
dC (size K × K) and

db
dC (size N ×K), respectively.7 Importantly, each partial derivative is evaluated “locally”

in the neighborhood of the initial climate C and its associated equilibrium b∗(C).

6Note that the marginal product of climate is equivalent to the gradient of the value function ∇V (C),
which always points in the direction of most rapid ascent, locally.

7 The Jacobian matrices are dc
dC

=


∂c1
∂C1

· · · ∂c1
∂CK

...
. . .

...
∂cK
∂C1

· · · ∂cK
∂CK

 and db
dC

=


∂b1
∂C1

· · · ∂b1
∂CK

...
. . .

...
∂bN
∂C1

· · · ∂bN
∂CK

.
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In the ideal experiment, we would compare two identical economies with initial climate

C, perturbing the climate of one by a small disturbance C′ to C + C′ and allowing the

economy to adjust b∗ endogenously. The resulting difference in productivities would then

be the marginal product dV (C)
dC , capturing contributions from both direct effects and belief

effects. As highlighted in the literature, the central empirical challenge to finding suitable

quasi-experimental conditions to measure dV (C)
dC empirically has been the absence of reliable

exogenous changes in C. For example, long-run average climate conditions may be corre-

lated with unobserved heterogeneity (Deschênes and Greenstone, 2007); and while gradual

changes of the climate within a location may be available in some contexts, they may be

correlated with unobserved trends in confounding variables that also evolve slowly (e.g. the

frequency-identification tradeoff described in Hsiang and Burke, 2014). Thus, it is appeal-

ing to examine random fluctuations in weather c as proposed by Deschênes and Greenstone

(2007), since this source of variation is generally orthogonal to unobserved heterogeneity.

However, it has remained an open question whether dY
dc can be mapped to dV

dC in a manner

consistent with economic theory because populations adapt to climate (via b) but not to

weather and because the belief effects in Eq. 11 are likely too numerous to characterize

through enumeration. A key insight of this paper is that, while these two gradients are

different mathematical objects, their values are equal in the neighborhood of b∗, allowing

us to measure the value of climate by isolating the marginal product of weather net of

unobserved heterogeneity. This insight results from application of the Envelope Theorem.8

The intuition is as follows. Imagine there are identical adjacent villages along a road that

runs North-South, and each village has a single choice variable, i.e., b = b. Each village

also faces a one-dimensional climate C = C, with more northern villages experiencing

colder conditions. The surface Y (C, b) is illustrated in the left panel of Figure 2.9 Given

their climate C, individuals and firms in the villages maximize their utility and profit,

respectively. The result is that each village’s b∗ is such that Y is maximized by firms given

prices. Therefore, in equilibrium, villages’ outputs lie along the “ridge” of the Y surface

(viewed from the perspective of firms), which is equal to the value function V (C) indicated

by the blue line. An observer traveling along this road would observe that village economies

differ in b, since villages adapt as C changes. In contrast, if villages did not adapt, b would

be constant regardless of C, locating output along the road on a “slice” of the Y surface at

a fixed b rather than the ridge. Two examples of such slices are depicted as red and orange

lines for b1 and b2, respectively, each of which is optimal for a single village located where

8In related work, Guo and Costello (2013) exploit the Envelope Theorem to demonstrate that adaptation
to climate should generate limited value on the margin in California timberland management. Similarly,
Schlenker, Roberts, and Lobell (2013) demonstrate empirically that marginal costs of adaptation to tem-
perature in US maize production closely match marginal benefits at the current equilibrium, a result fully
consistent with the predictions of the Envelope Theorem as it is used in the present analysis.

9In the Appendix A2, we expand on this example for the case with a two-dimensional climate.
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b C

Y

Y(C,b1)
Y(C,b2)

Y

C

Y(C,b2)

Y(C,b1)

b1 = b*

b2 = b*

V(C)

Y(C,b)

Y(C,b*) = V(C)

Figure 2: Output in a one-dimensional climate C with one control variable b. Left: Gray
surface is output Y (C, b), blue line is the value function Y (C, b∗(C)) = V (C), red and
orange lines are “slices” where b is held at fixed values. Right: Displaying V (C) and slices
from the left panel when they are projected onto the Y -C plane. Appendix Section A2
displays the value function for a two-dimensional climate.

the slice is crossed by the blue line.

If we do not observe b for each village, then we only see the relationships between Y

and C, shown as the projection of the equilibrium (blue) onto the Y -C plane on the right

panel of Figure 2. The slices for b = b1 and b = b2 are also projected onto this plane, and

lie below the equilibrium everywhere except at the climate for which they are optimal.

Now, if the weather of a village changes unexpectedly such that it is different from

its climate by ξ, b∗ will not be adjusted in the short run and the village will produce

Y (C+ ξ, b∗(C)). Output of the village will be determined by its respective slice of Y where

b is held fixed at b∗(C) (e.g. the red line). For large perturbations, output will temporarily

fall below the ridge (blue line), but so long as the village’s beliefs about their climate do

not change, they will remain at b∗(C) and output will recover when the weather returns to

C. For this reason, numerous researchers have argued that econometric measurements that

exploit weather variation as the independent variable do not recover the effect of altering C

once b is allowed to adjust (reviewed in Dell, Jones, and Olken, 2013; Hsiang, 2016). Here

we point out that, for small perturbations, the responses of Y to weather (red and orange

lines) are tangent to the value function (blue line) in the neighborhood of each village’s b∗.

Thus, even if the value function cannot be observed directly, its local derivative—i.e. the

marginal product of climate—can be measured locally by exploiting variation in weather

where ξ is small. Then, if we can observe a large number of these local derivatives for nearby

villages with different initial C, we can piece them together via integration to recover the

overall shape of the value function along this hypothetical road where adaptations occur

continuously across neighboring villages.
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Therefore, the first key result is the equivalence, locally, of the marginal effect of climate

and the marginal effect of weather in the neighborhood of an initial equilibrium, regardless of

any possible margins of adaptation. This equivalence is obtained because (i) no adaptation

occurs in response to weather and (ii) adaptation has no influence on the marginal effect

of climate locally since Y is initially optimized. That is, the effect of adaptation locally is

zero in both cases. The second key result is that a large number of local marginal effects

can be integrated to compute the non-marginal effect of large changes in the climate.

To see these results in the general case, let Ca be a benchmark climate at which we are

evaluating the marginal product of climate. To estimate the k-th element of dV (Ca)
dC (Eq

10), we differentiate V by Ck at Ca. By the chain rule, we have

dV (Ca)

dCk
=
∂Y (c(Ca),b∗(Ca))

∂Ck︸ ︷︷ ︸
=0

+

K∑
κ=1

∂Y (c(Ca),b∗(Ca))

∂cκ

dcκ
dCk︸ ︷︷ ︸

direct effects

+
N∑
n=1

∂Y (c(Ca),b∗(Ca))

∂bn

dbn
dCk︸ ︷︷ ︸∑

belief effects=0

.

(12)

The climate, as a probability distribution, cannot affect any outcome by a pathway other

than through the weather realizations it causes and actions based on beliefs regarding its

structure. This implies the first term must be zero. Because V is the outcome when Y has

been optimized through each possible adaptation bn, we also know that ∂Y
∂bn

= 0 for all n.

This means the sum of all belief effects must be zero even if observable adaptive adjustments
db

dCk
are large. Thus, only the terms ∂Y

∂cκ
dcκ
dCk

(direct effects) may be nonzero.

Next, we note that for any marginal change in the distribution of weather, there exists

a marginal change in climate that is equal in magnitude and structure such that dcκ
dCk

= 1

if κ = k and 0 otherwise. Thus, we can focus only on cases where κ = k, i.e. the effect of

the κ-th element of c is thought to be informative of the effect of the k-th element of C.10

Then we have dV (Ca)
dCk

= ∂Y (Ca,b∗)
∂ck

, which says that the total marginal effect on V of the

kth dimension of the climate, evaluated at Ca, is equal to the partial derivative of income

with respect to the corresponding dimension of weather, also evaluated at Ca. Locally, the

marginal effect of the climate on income is identical to the marginal effect of the weather.

Extending this to all K dimensions of the climate we have our first result

dV (Ca)

dC
=
∂Y (Ca,b∗)

∂c
, (13)

stating that the full K-dimensional marginal product of climate, net of all endogenous

adaptations, is equal to the vector of partial effects of K weather measures, ignoring all

10 This restriction is equivalent to setting dc
dC

equal to the identity matrix and is quite weak. It simply
requires that we do not interpret changes in one measure of weather (e.g. realized average temperature) as
reflecting changes in an orthogonal climate measure (e.g. expected rainfall).
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adaptations.11 Equation 13 is particularly useful empirically because the right-hand-side

term can be estimated in a multivariate time-series or panel model regression that is purged

of location-specific heterogeneity (e.g. using county fixed effects), following the approach

laid out in Deschênes and Greenstone (2007). Importantly, however, for Equation 13 to hold,

the outcome must represent a maximized quantity, which is true in the case of income—

studied here—but may not hold for other outcomes, such as crop yields or mortality risk.

Empirical estimates of Equation 13 can be used to construct estimates of non-marginal

climate effects by integrating marginal effects of weather. For an arbitrary climate Cb, we

can solve for V (Cb) by computing a line integral of the gradient in V along a continuous

path through the K-dimensional C-subspace (i.e. C) from Ca → Cb, starting from V (Ca):

V (Cb) = V (Ca) +

∫ Cb

Ca

dV (C)

dC
dC. (14)

At each position C ∈ C, dV (C)
dC is a vector of differentials describing all the marginal effects of

the climate measured locally at C. From Equation 13 we know that these differentials with

respect to climate can be substituted for using differentials with respect to weather, which in

turn can be estimated empirically via regression. Empirically,
̂∂Y (C,b∗)
∂c = β̂weather

∣∣∣
C

, where

β̂weather is a reduced-form parameter estimate of the marginal effects of weather on total

economic production. Combining this fact with Eq. 13, we obtain our second result, an

estimate for the net value of a non-marginal change in the climate from Ca to Cb exploiting

only exogenous variation in weather:

V (Cb)− V (Ca) =

∫ Cb

Ca
β̂weather

∣∣∣
C
· dC. (15)

Eq. 15 says that the change in value resulting from a non-marginal change in climate

can be computed as a line integral through a vector field of empirical gradient estimates

constructed by regressing income on idiosyncratic weather variations.

Because non-marginal changes in climate may induce substantial adjustments to control

variables in the economy, dV (C)
dC may change with C, implying that fully accounting for

adaptation in Eq. 15 requires that new marginal effects β̂weather be empirically estimated

at each position in C. If these marginal effects are not constant across C, then V (C) has

curvature in the K-dimensional space. If a single marginal effect of weather is estimated,

pooling across many baseline climates, this is equivalent to forcing the marginal effect of

climate to be constant in each dimension of C. Such a “constant marginal effect model”

might reasonably approximate V (C), although it is difficult to be certain whether this is

11Hsiang (2016) describes the assumption of Eq. 13 in prior work as the marginal treatment comparability
assumption, which holds exactly in this context.
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the case ex ante. In our empirical implementation, we explore when constant marginal

effects are a good approximation and when nonlinearity is important for capturing adaptive

responses to climate expressed as curvature in V (C).

4 Empirical implementation for the modern United States

In our empirical analysis of the temperature climate for the US, we define ψ(.) such that

the probability distribution of daily average temperatures within each year and location is

described by a 17-bin histogram, where the interior fifteen bins are each 3◦C wide and the

top and bottom bins are not bounded above and below, respectively. The space of possible

climates C is thus the 16-simplex, constrained such that the total number of days in a year

is exactly 365. The position of a county i on the 16-simplex C is then Ci, a 16-element-long

vector describing the expected count of days in each temperature bin less one.

4.1 Identification strategy

Our objective is to empirically estimate the value of permanently repositioning county i’s

climate Ci to some location Ci+C′. To measure this value, our empirical strategy exploits

the result in Equation 13 and measures the marginal value of changes in the weather vector

cit within location i over time, which is equal to the marginal value of the permanent

distortion in Ci. The weather vector cit necessarily has the same 16-element structure as

Ci and can be written as cit = Ci + ξit, where ξit is a vector of disturbance terms.12 As ξit

varies randomly over time, the position of cit will “explore” C in the neighborhood of Ci,

allowing us to estimate the local marginal effect of these changes on output. An important

econometric benefit of exploiting the within-county variation in cit is that it allows us

to utilize panel-regression techniques that condition out unobservable heterogeneity across

counties using a fixed effect (Schlenker and Roberts, 2009; Deschênes and Greenstone, 2011).

The left panel of Figure 3 displays an example realization of cit overlaid on the climate Ci.

The difference between these distributions (black outlines, bottom) is the vector ξit, which

provides our identifying variation.

Once we empirically estimate the local structure of V (Ci) by exploiting within-county

variation in cit, we can use these local marginal effects to compute V (Ci+C′) via integration

(Equation 15). The right panel of Figure 3 heuristically illustrates how we might apply this

approach to compute the difference in value between the climate of St. Paul, Minnesota and

Orlando, Florida. By tracing a path through adjacent counties from St. Paul to Orlando, we

gradually move through the 16-simplex of C and at each step use local variation in weather

to estimate ∂V (Ci)
∂cit

, which we then integrate to determine the shape of the surface from

V (Ci) to V (Ci+1). It is worth noting that the exact path taken from St. Paul to Orlando

should not matter, so long as V (C) is sufficiently smooth and counties are sufficiently “near”

12Note that it need not be the case that E[cit] = Ci in order to trace out a tangency to the value function.
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Figure 3: (Left) Comparing the average temperature distribution of a county, where bin
heights are Ci, (gray) with a slightly altered distribution resulting from the weather cit (red
outline), which might be identical to Cj for adjacent county j. The difference between these
distributions (black outline) is the identifying variation in temperature distributions (ξit).
(Right) Example integration path (red) used to compute the difference in value of the climate
in St. Paul, MN versus Orlando, FL (both black). Small histograms illustrate hypothetical
temperature distributions along this path, evolving by almost continuous marginal changes.

one another in C, relative to the curvature of V (C). The more linear V (C) is, the more

reasonable it is to extrapolate between counties distant in C.

4.2 Regression specification

We construct our empirical specification to closely reflect the theoretical structure of the

climate value function. To do this, we combine Equations 10, 13, and 14, setting the

benchmark climate to Ci. Additionally, we allow the overall level of the value function to

depend on a variety of other unobserved location- and time-specific factors zit that may be

unrelated to the climate, such as history and human capital endowments, which affects the

county-specific time-varying constant of integration V (Ci|zit):

Y (Ci + C′it,b
∗) = V (Ci + C′it) = V (Ci|zit) +

∫ Ci+C′it

Ci

dV (C)

dc
· dc

= V (Ci|zit) +

∫ Ci+C′it

Ci

[
∂V (C)
∂ck=1

, · · · , ∂V (C)
∂ck=K

]
· dc

=
C′ → 0

ξit → 0

V (Ci|zit) +
[
∂V (Ci)
∂ck=1

, · · · , ∂V (Ci)
∂ck=K

]
· ξit. (16)
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The term V (Ci|zit) is the total income that the economy at i would obtain at time t

conditional on covariates zit if the climate remained at Ci, In the empirical specification,

we model the influence of zit using vectors of county fixed-effects, year fixed-effects, and

an auto-regressive term. The last equality in Eq. 16 is the first-order Taylor expansion

of V (Ci + ξit) and holds exactly for sufficiently small changes in ξ. The last term in this

line is the inner product between the K-dimensional gradient vector of the value function

evaluated at Ci (the object of interest) and the disturbance vector ξit describing how weather

conditions in county i and time t deviate from Ci.

Importantly, the marginal product of climate is identified locally, in the neighborhood

of Ci, and it is possible that marginal products at different positions in C are not identical.

This may occur if, for example, populations adapt to climates in ways that alter the local

marginal product (e.g. installing air conditioning). To account for non-constant marginal

effects, we construct a model that is nonlinear in each of theK dimensions of C, which allows

the marginal product of climate to change as a function of the position Ci ∈ C, thereby fully

capturing all effects of adaptation as well the net effect of all other non-linear responses in

the PPF (e.g. Schlenker and Roberts, 2009) or aggregate demand (e.g. Auffhammer, Baylis,

and Hausman, 2017).

Next, we construct an empirical analog to Equation 16. The dimensions of climate we

consider in our main specification include daily temperature and precipitation distributions

in both the current and past year. Our main focus is on the effect of current temperatures,

however, as these other dimensions of the climate appear to have little effect on the value

function. We also account for within-county autocorrelation, unobserved heterogeneity

across counties, and nonlinear time trends. Specifically, we estimate

Yit = ρYi,t−1 +µi+θt+

H∑
h=1

[∑
m

[
βmh(T̃mit )h + γmh(T̃mi,t−1)h

]]
+
∑
g

[
ζnP̃ git + ηnP̃ gi,t−1

]
+ εit,

(17)

where counties are indexed by i and years are indexed by t. Yit is a measure of output, which

in our main specification is log income per capita. µi is a set of county fixed effects that

account for unobserved constant differences between counties, such as elevation. θt is a set of

year fixed effects that flexibly account for common trends, such as technological innovations

or trends in climate, and year-specific shocks, such as abrupt changes in energy prices. The

model allows the value function to be nonlinear in each dimension (bin) of the temperature

climate up to the order H, which is crucial for fully accounting for adaptation.13 In our

“constant marginal effects model,” we set H = 1, thereby constraining the marginal effect of

a hot day to remain fixed throughout the support of the weather data. We then re-estimate

13We find that the role of precipitation is essentially zero, even in an affine model, so we do not present
models that account for curvature in the precipitation subspace of C.
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Equation 17 with H = 3, allowing for independent and asymmetric curvature in every

temperature dimension of C. This allows, for example, the marginal effect of additional hot

days to become larger or smaller depending on whether a location already experiences a

large number of hot days.

T̃mit is the number of days in county i and year t that have 24-hour average temperatures

(Td) falling in the mth temperature bin. Each interior temperature bin is 3◦C wide. We

define T̃m=1
it = the number of days when Td < −15◦C, T̃m=2

it = the number of days when

Td ∈ [−15,−12)◦C, T̃m=3
it = the number of days when Td ∈ [−12,−9)◦C, and so on.14 The

top (m = 17) bin counts days with Td ≥ 30◦C=86◦F. The omitted category is the bin

for Td ∈ [12, 15)◦C = [53.6, 59)◦F . Daily precipitation bin values P̃ g are defined similarly:

each of the 12 precipitation bins spans 40mm of rainfall equivalent, with the bottom bin

corresponding to no precipitation and the top bin corresponding to precipitation > 400mm

in a day. Because temperatures and precipitation are, on average, serially correlated across

years within a county, we include lagged values for all T̃m and P̃ g variables to capture any

possible direct effects that weather in the prior year might have on current output. We

explore additional lags (across time and space) in extensions.

Yi,t−1 is a lagged dependent variable with serial correlation coefficient ρ. Including

this term is important because there is substantial serial correlation in outcomes at the

county level that is not accounted for by common trends. For example, the history of

capital investments within a county affects production in subsequent years. One drawback

of dynamic panel models, such as Equation 17, is that they are inconsistent when lagged

dependent variables and fixed effects are estimated simultaneously by OLS (Nickell, 1981).

However, this drawback is primarily a concern when panel lengths are short (e.g. ≤10

periods). We are not in this hazardous context, as our panel has 43 periods. The magnitude

of potential bias in our case is less than 5% of the magnitude of our point estimate, far

smaller than our uncertainty due to sampling error.15

Finally, we estimate standard errors that are clustered in two dimensions (Cameron,

Gelbach, and Miller, 2011): within state-by-years and within counties. This approach

accounts for both spatial correlation across contemporary counties within each state and

autocorrelation within each county.16

14For display purposes, coefficients on the two coldest temperature bins (Td < −15◦C and Td ∈
[−12,−9)◦C) are not shown in figures. Generally, there are few observations at these extremely cold tem-
peratures, and the estimated effects are highly uncertain and not statistically different from zero.

15Nickell (1981) derives that the bias scales like −(1+ρ)
(T−1)

, where T is the number of periods. Based on

our estimate that ρ̂ = 0.825 for log personal income per capita, −(1+ρ)
(T−1)

is approximately 0.045 in our case.
For completeness, we have also computed estimates without any lagged dependent variable and continue to
obtain our main result (available upon request).

16See Fisher et al. (2012) for a discussion of this technique to account for spatial autocorrelation and
Hsiang (2010) for a discussion of simultaneously accounting for spatial and temporal autocorrelation.
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The coefficients βmh are the parameters of interest, as they characterize the marginal

effect on Y of an additional day in the mth temperature bin, relative to a day with tempera-

tures in the omitted category. In the constant marginal effects model (H = 1), the vector of

coefficient estimates [β̂m=1, ...β̂m=16] is directly interpretable as the gradient vector for the

value function, the marginal product of climate d̂V (C)
dC , as indicated by the inner-product

term in Eq. 16. When we set H = 3 to fully account for adaptation, interpretation becomes

more nuanced. The vector of coefficients (which is now three times longer) can no longer be

directly interpreted as the gradient vector of the value function because the first-order Tay-

lor expansion used in Equation 16 is no longer exact. Instead, the total effect of T̃mit days in

the mth temperature bin is estimated as the polynomial β̂m1T̃mit + β̂m2(T̃mit )2 + β̂m3(T̃mit )3.

Thus, the marginal effect of each additional day in the mth temperature bin—i.e. mth

element in d̂V (C)
dC —is the derivative of this polynomial with respect to the count of days in

the mth bin: β̂m1 + 2β̂m2T̃mit + 3β̂m3(T̃mit )2.

4.3 Data

We use county-level weather and income data for the lower 48 states over the period 1969-

2011.17 To measure daily maximum and minimum temperatures as well as precipitation,

we use surface data from the National Centers for Environmental Information (NCEI).18

We match weather stations to counties using each station’s reported latitude and longitude.

We omit cases where the maximum or minimum temperature exceeds 60◦C or is lower

than -80◦C, as these are likely errors. If there are multiple stations within a county, we

average their measures for each day. Our measure of daily temperature is a simple average

between the maximum and minimum temperatures, which is the standard measure for

average temperature during a 24-hour period.19 We drop county-by-year observations that

do not have a complete set of daily observations, as their full daily temperature distribution

is unknown.20

To measure income, we use Regional Economic Information System (REIS) data, pub-

lished by the Bureau of Economic Analysis (BEA). The BEA, in turn, uses a variety of

sources to construct these measures.21 The most comprehensive income measure at the

county level is total personal income. It includes all types of labor income; proprietors’

income; dividends, interest, and rent payments; and government transfer payments. A sub-

set of personal income, earnings, includes only wages and salaries, other labor income, and

proprietors’ income. Wages and salaries include tips, commissions, bonuses, and any “pay-

17For additional data details, including summary statistics for key variables, see the Appendix.
18Available from ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/.
19Diurnal temperatures cycles are roughly sinusoidal, so this is a good approximation for the true mean.
20As discussed in Auffhammer et al. (2013), weather station data is often incomplete due to mechanical

failures or political events.
21For further details, see http://www.bea.gov/regional/pdf/lapi2016.pdf.
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in-kind” provided by an employer. They are measured before any deductions are taken and

are derived from reports filed by employers to comply with unemployment insurance laws.

REIS measures of farm income are derived from United States Department of Agricul-

ture estimates, which are based on sample surveys, Agricultural Census data, and adminis-

trative data. We use cash receipts from marketing crops to capture gross income. We also

examine net farm income, which includes additions to inventories, transfers such as subsi-

dies, crop insurance, and disaster payments (we examine these transfers in the Appendix).

We inflation-adjust all measures to 2011 dollars and convert them to per capita terms.

5 The marginal product of temperature

5.1 Results assuming constant marginal effects

We first present estimates of the marginal product of temperature assuming the value func-

tion V (C) is a flat hyperplane spanning a 16-dimensional C defining all possible contempo-

raneous temperature distributions, i.e. H = 1 in Equation 17. This model provides a good

first-order approximation of the marginal product of temperature.22 In the next section we

demonstrate how allowing for curvature in the value function alters these results.

The left panel in Figure 4 shows our main result: the marginal product of daily temper-

ature with respect to personal income per capita. Specifically, the figure displays the vector

of coefficient estimates for contemporaneous daily temperatures [β̂m=1, ...β̂m=16], which is

exactly equal to the estimated marginal product of climate d̂V (C)
dC . Because this vector is

the gradient of V (C), each point estimate β̂m can be interpreted as the marginal effect

of increasing the annual count of days in that temperature bin by one (Deschênes and

Greenstone, 2011). Implicitly, such a change requires removing a day from the omitted

temperature bin to ensure a valid annual temperature distribution that lies in C.
We find that counties’ log personal income per capita increases slightly as temperatures

rise from cool to moderate, then declines approximately linearly at temperatures above

15◦C (59◦F). Relative to a day with an average temperature of 15◦C (59◦F), a day at 29◦C

(84.2◦F) lowers annual income by roughly 0.065% (−0.00065 log points). This effect is

highly statistically significant. In the Appendix, we consider the effect of temperature on

the earnings component of personal income and obtain similar, albeit larger, results.

For a sense of magnitudes, note that if output were uniform across 365 days in a year,

then each day would contribute 1
365 = 0.27% of annual income. In this case, a decline of

0.065% of annual income from an extremely hot day with average temperature of 29◦C

(84.2◦F) indicates a productivity loss of roughly 23.6% relative to an average day. Lineariz-

ing the effect of temperature relative to the zero effect at 15◦C (59◦F), this is a marginal

change in daily productivity of −23.6%
(29−15)◦C = −1.68%/◦C = −0.93%/◦F.

22Our estimates of the effect of rainfall, available upon request, are essentially zero.
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365 = 0.27% of annual income.
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T ∈ [12, 15)◦C. Left and right panels are estimated simultaneously in a single regression
model.

The right panel in Figure 4 displays the estimated effect of daily temperatures on annual

income per capita the following year (γm in Equation 17). We estimate these effects jointly

with the contemporaneous effect shown in the left panel. Except for the hottest temperature

bin (> 30◦C), we do not observe any statistically significant effect of daily temperatures on

income the following year. Even this single significant coefficient may be spurious, as we

are testing sixteen coefficients. Alternatively, if interpreted as meaningful, this coefficient

suggests that roughly half of the income loss from the very hottest days is made up in the

following year.23

Persistence A key requirement of our approach is that the weather events we exploit for

identification do not perturb an economy so far from its equilibrium that the Envelope The-

orem is no longer valid. So far, one indication that this assumption holds here is the finding

that changing the temperature of an individual day lowers annual output by only fractions

of a percentage point. A second indication that we now test for is whether the economy

moves back to its initial equilibrium after an economic disturbance triggered by a single

23In later simulations, we include temperature lags to ensure we do not mis-estimate the effect of high
temperature days.
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hot day. If the economic disturbance persists indefinitely, that might indicate a permanent

change in allocations b, which could in turn indicate a violation of our assumption that

economies are initially at an optimum b∗(C) determined by their long-run climate. Thus,

we examine the persistence of output effects in the years following a marginal change in the

temperature distribution.

We also directly examine whether the effects of temperature changes and any endogenous

responses to them are more or less persistent than those of other idiosyncratic income

changes.24 Estimation of Equation 17 recovers ρ̂ = 0.825 for log personal income per

capita. Thus, an income loss of $1 in county i in year t will result in a conditional income

loss of $0.825 in year t+ 1, $0.68 in year t+ 2 and so on, relative to the case of no loss in

year t. However, this pattern of auto-correlation is largely identified off of variations in the

idiosyncratic disturbance term ε —not from changes in county temperature.

To isolate the effects of temperature-induced changes in income, we estimate a variant

of Equation 17 where we replace the lagged dependent variable term (ρYi,t−1) with ten

annual lags of each temperature and precipitation bin. If current temperatures affect future

income similarly to other types of income disturbances, then the structure of these lags

should be similar to the negative-exponential structure of persistence indicated by ρ̂Yi,t−1.

The results for log income per capita, as well as for farm income—which we analyze further

in Section 6—are shown in Figure 5.25 For comparability, all lags are normalized to the

contemporaneous effect of that temperature bin. The thick black line corresponds to the

24We thank James Stock for this suggestion.
25See the Appendix for an analogous test of earnings results.
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repeated exponentiation of the estimated autoregressive coefficient (ρ̂ t, normalized). Thin

colored lines are the lagged effect of a single additional day in the indicated bin.

The effects of hot days clearly decline over time with an average structure that resembles

the negative exponential decay captured in our auto-regressive model, although the 252 ad-

ditional parameters needed to characterize persistence (9 additional lags for 16 temperature

bins and 12 precipitation bins) cause the unrestricted lagged coefficients on temperature

bins to be much noisier than the baseline model. For total income, the effects of the hottest

three bins decay more rapidly than in the baseline model, a response partly captured in

the baseline model as the delayed positive response from hot temperatures (recall Figure

4). For farm income, the initial persistence of temperature-driven income changes tends to

be substantially lower than in the baseline model, but the ratios for lags larger than three

years are very similar to the autoregressive term (and close to zero).26 Nonetheless, in both

cases we observe effects that are persistent but do not appear to be permanent, supporting

our key assumption that these perturbations are marginal.

Our finding that changes in the current temperature distribution of a county change the

future income trajectory of that county roughly similarly to the effects of other contempora-

neous income disturbances has two additional implications worth noting. First, this result

provides county-level support for prior country-level findings that temporary climatic condi-

tions alter future economic production, an effect modeled using growth rates in earlier work

(Hsiang, 2010; Dell, Jones, and Olken, 2012; Burke, Hsiang, and Miguel, 2015).27 Second,

evidence of any persistence implies that the total NPV cost of a change in the temperature

distribution is larger than the contemporaneous marginal product would suggest. Using a

3% discount rate and ρ̂, a change in total income due a shift in the temperature distribution

produces an NPV of income changes that is 5 times as large as the contemporaneous effects

in Figure 4.28 Below, we do not present this NPV and instead focus on the contempora-

neous marginal product of climate, although we do account for persistence in constructing

economic projections under climate change.

Stationarity of the relationship over time We consider whether the marginal product

of climate has changed appreciably over the time period in our sample (1969-2011). Some

consequences of climatic conditions have surely changed over this period, as have many other

26It is possible that the relatively faster recovery of farm income is due to the particular ways in which
the PPF in agriculture recovers from temperature changes, although some of this recovery is likely due to
crop insurance indemnities paid out as a result of hot temperatures (see the Appendix).

27Prior studies argued that such persistent effects could materialize, for example, if the evolution of durable
non-climatic state variables, such as the rate of investment in the capital stock, is influenced by the climate,
thereby causing historical climate conditions to affect future periods (Burke, Hsiang, and Miguel, 2015).

28 The NPV of the altered income trajectory is a linear scaling of coefficients by 1
1−ρ̂δ :

∑∞
s=t δ

(s−t)∆Y mis ≈∑∞
s=t δ

(s−t)ρ̂(s−t)β̂m = 1
1−ρ̂δ β̂

m. Using a discount factor δ = 0.97 (implying an annual discount rate of 3%)
and ρ̂ = 0.825, we estimate this scaling factor to be 5.01.
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Figure 6: The stationary marginal product of climate over four decades. Figure shows the
gradient of the value function for temperature (as in Figure 4) using decade-long subsamples.

aspects of the US economy. For example, the spread of residential air conditioning appears

to be responsible for reducing heat-related mortality during the last half-century (Barreca

et al., 2016). Meanwhile, other technology, such as the heat-tolerance of maize, remained

essentially stationary during this time (Roberts and Schlenker, 2011). Importantly, prior

analyses that document how sensitivity to climate evolves over time do not account for

the net cost of those adaptations, i.e., opportunity costs due to re-optimization of b∗, and

they cannot account for the (potentially offsetting) substitutions or complementarities that

inform the full economic value of these changes in equilibrium. By contrast, our estimate

of the gradient in the value function captures all market costs and benefits of adaptations

as well as general equilibrium effects, the net effects of which we can observe over time.

To that end, we re-estimate the response of income to temperature separately for each

decade. These estimates, shown in Figure 6, are noisier because each relies on a smaller

sample, but they do not differ meaningfully from our pooled estimate or from one another.

In particular, the marginal effect of warm and hot days is essentially constant over time,

demonstrating a remarkable stability of this component of the gradient of the value function.

Importantly, such stability does not imply that welfare-increasing adaptations to tempera-

ture, such as the spread of air conditioning, have not occurred during the last half-century

in the US (recall that observable adaptive adjustments db
dC may be arbitrarily large in Equa-

tion 12), but it does indicate that the collective net impact of all such adaptations did not

fundamentally alter the marginal product of climate. High temperature days remain costly

and moderate temperatures remain relatively productive even into the twenty-first century.
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Seasonal and regional heterogeneity Next, we examine whether the marginal product

of climate varies substantially across seasons by estimating a version of Equation 17 where

we construct a set of temperature bins for each quarter. The results are shown in the

top row of Figure 7. The marginal effects of warm and hot days in the second and third

quarters (roughly corresponding to spring and summer) are extremely similar to each other

and to the pooled estimates. A similar pattern holds for cold days in the first and fourth

quarters. However, we lack precision to make meaningful comparisons between cold days in

the second and third quarters or between hot days in the first and fourth quarters, because

such days are uncommon. Overall, these results show that, for those portions of C with

sufficient data, the marginal product of climate is quite consistent across seasons.

Finally, we examine regional heterogeneity in the data. Recall that the marginal product

of climate is the local gradient of the value function V (C), measured in the vicinity of some

position C0 ∈ C. If the local shape of the value function depends on the climate of a location,

the local gradient vector will change as C is traversed, producing curvature in the value

function. Such curvature could result from endogenous adaptations to different climates
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when populations select different b∗(C) (e.g. investing in air conditioners), as illustrated in

Figure 2. Curvature in V (C) could also result from features of the income-generating process

that are beyond agents’ control, since the PPF may itself respond nonlinearly to temperature

(e.g. Schlenker and Roberts, 2009) as might aggregate demand (e.g. Auffhammer, Baylis,

and Hausman, 2017). For any of these reasons, if there is such curvature, then the marginal

product of climate will be different for different regions of the country, because counties in

different regions will, on average, be located in different parts of C.
We examine the marginal product of climate for four major regions of the country, the

West, Midwest, South, and Northeast (as defined by the US Census), searching for prima

facie evidence of curvature in V (C). The results, shown in the bottom row of Figure 7,

indicate that the overall structure of the response to daily temperature distributions is

similar across the country, suggesting that curvature in the value function may exist but

is not dramatic for most temperatures. No regional subsample exhibits a response that is

statistically different from the pooled estimate at any temperature, although the structure

of point estimates at high temperatures provides suggestive evidence that the effect of such

temperatures is not identical everywhere. In particular, high temperatures are most costly

in the Midwest and least costly in the South. In Section 6 we investigate possible reasons

for these differences, but first we consider the structure of curvature in the value function

directly.

5.2 Results for a value function with curvature

We now present results that do not assume the gradient vector of the value function V (C) is

constant, effectively allowing the marginal effect of distorting the temperature distribution

by C′ to depend on the county’s initial position within C. Accounting for curvature in the

value function becomes important if, for example, the marginal effect of additional hot days

declines as a population experiences and adapts to higher numbers of hot days. To estimate

a curved surface, we set H = 3 in Equation 17 such that income is cubic in the count of days

in each bin, allowing the value function to curve in any of its sixteen dimensions. Because

this approach fully accounts for changes in the marginal effect of temperature distributions

due to adaptation, we denote it the “full adaptation model,” in contrast to the previously

estimated “constant marginal effect” model.

Figure 8 presents the results of these two models for all temperature bins above 15◦C.

Because the gradient vector of the value function in the full adaptation model is no longer

constant, it cannot be plotted as in earlier sections. Instead, we display the total (non-

marginal) contribution of days within each temperature bin to annual income. Each curve

can be thought of as a one-dimensional cross-section through the 16-dimensional value

function, with the derivative representing the marginal effect of an additional day at that

temperature. For each temperature bin, each individual county will be roughly centered
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at its average count of days in that bin (its climate), with small variations in that count

(weather) contributing to our estimate of the local slope of the corresponding curve at that

position. For reference, the right-most panel displays empirical probability distributions

over the count of days in each temperature bin across our sample of county-years, using the

same color scheme as the center and left panels.

In the constant marginal effects model (left-most panel of Figure 8), annual income

declines linearly in the count of days within each warm or hot temperature bin, with slopes

that are equal to the constant marginal effects in Figure 4. In the full adaptation model

(middle panel of Figure 8) the marginal effects of warm temperatures (15-18◦C and 18-

21◦C) are less negative for small counts of days, becoming more negative as counts of days

increase, while the marginal effect of very hot temperatures (27-30◦C and > 30◦C) are most

negative for small counts of days. For the “middle-hot” temperature bins (21-24◦C and

24-27◦C ) the marginal effects of additional days appear to be essentially constant.

For the 27-30◦C bin, the convexity is modest, with the first day in this bin reducing

annual incomes by 0.096%, the tenth day reducing income by 0.081%, and the thirtieth

day reducing income by 0.054%. Because almost all county-years experience fewer than
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ten days in this category, the in-sample response remains well-approximated by a linear

function. Only for the very hottest bin, where temperatures exceed 30◦C, does curvature

in the value function have such a large effect that the affine approximation is poor. Having

one such hot day lowers annual income by 0.181% (recall that the average day contributes

roughly 0.274% to annual income); the tenth hot day a year lowers annual income by only

0.125% and the thirtieth lowers income by a still smaller 0.039%. It is worth noting that

over 70% of county-years in our sample have only one or zero days in this bin (right panel of

Figure 8), and only very hot regions of the country have a large number of days with such

high temperatures.29 The flattening out of the value function indicates that these areas

make large adaptive allocations in b∗ such that hot days have limited marginal impact.

To our knowledge, this estimate of the non-affine 16-dimensional value function rep-

resents the first characterization of the market value of temperature, accounting for all

benefits and costs of adaptive adjustments captured by the market. Importantly, our re-

sults reveal that, for most regions in C currently populated by modern US counties, the

constant marginal effects model is a strikingly good approximation of the curved surface

described by the complete adaptation model. This insight, which we could not have as-

sumed ex ante, is powerful because it allows us to more confidently exploit the constant

marginal effects model when exploring additional heterogeneity in the data, simplifying our

analysis and description of the value function. However, the adaptive responses captured

by curvature in the value function become increasingly relevant as populations move into

regions of C that contain large numbers of hot and very hot days, such as in our projection

of future climate changes impacts. Thus, if marginal effects are assumed to be constant in

these simulations, we will mis-estimate the total effect of warming the climate, which we

demonstrate in Section 7.2.

Note on the sign of forecast bias A “folk theorem” salient in the climate-economics

literature states that climate change projections using econometric estimates that assume

constant marginal effects of temperature represent an “upper bound” for the damage from

warming, since un-modeled adaptations will cause the actual marginal damages from warm-

ing to be smaller. Figure 8 demonstrates that this idea originates from correct theoretical

intuition, in the sense that populations with many hot days adapt to them, but the rea-

soning is incomplete when applied to regression analyses. Focusing on the response to very

hot (> 30◦C) days for simplicity, we see that the constant marginal effects model does

over-estimate the marginal damage from additional warming relative to the full adaptation

model for highly adapted populations with many (e.g. 40) very hot days—this is consistent

with the intuition of the “folk theorem.” However, the constant marginal effects model also

29There are extremely few county-year observations with more than 50 days above 30◦C, causing the slope
of the surface above this cutoff to not be statistically different from zero.
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under-estimates the marginal damage of warming for cooler and poorly adapted populations

that presently have few very hot days (e.g. 1). The slope of the fully adapted response is

actually steeper at one day above 30◦C (middle panel) than the constant marginal effects es-

timate (left panel). Because the constant marginal effects model recovers the pooled average

treatment effect in the sample, many cooler locations—which in the US represent the vast

majority of counties—are assigned marginal effects that are too small in magnitude. Thus,

as these numerous counties with very few hot days warm up, they initially descend down

the fully adapted curve much more rapidly than they would descend down the constant

marginal effects line. As we demonstrate in Section 7.2, because most economic activity

in the present-day US occurs in these relatively cool counties, fully accounting for adapta-

tion causes the projected losses from warming to increase relative to projections that use a

constant marginal effects model. The error in the “folk theorem” originates from failing to

account for the influence of historical adaptive behaviors, which are conceptually identical

to the future adaptations it assumes will occur but are already present in modern data.

6 Mechanisms

Next, we try to explore some of the mechanisms that underlie the results presented above

using two strategies. First, we explore the response of different sectors, since sectoral PPFs

may respond to temperature. Second, we stratify counties based on the extent to which

they have made prior investments in durable assets that are thought to be substitutes for

temperature in the economy, namely air-conditioning and urban infrastructure.

6.1 Farm, non-farm, and manufacturing income

In the US, high daily temperatures are known to reduce yields of major crops (Schlenker

and Roberts, 2009)30 as well as to reduce labor productivity among farm workers (Stevens,

2017) and labor supply among workers exposed to outdoor temperatures (Graff Zivin and

Neidell, 2014), which includes manufacturing workers. These responses will necessarily

alter a county’s PPF and thus could, in principle, explain our main finding. However,

these studies alone are not conclusive. If local or regional prices change with temperature,

perhaps in response to concurrent changes in aggregate demand, then changes in production

quantities might not translate into changes in revenue. We cannot observe local prices or

aggregate demand directly, but we can investigate whether temperature-dependence of the

PFF may be contributing to the overall effect of temperature on income by separately

examining its agricultural and non-agricultural components.

To examine how crop losses contribute to our main result, we repeat our analysis with

log (revenue from crop sales per capita) as the dependent variable. The response function,

30Also see Mendelsohn, Nordhaus, and Shaw (1994); Schlenker, Hanemann, and Fisher (2005); Deschênes
and Greenstone (2007); Fisher et al. (2012); Burke and Emerick (2016).
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capita, net farm income per capita (in levels), log non-farm income per capita, and log
non-farm income per capita interacted with county-level measures of manufacturing income
share (U.S. Census Bureau, 1969-2011).

shown in the top left of Figure 9, exhibits steep declines when daily average temperatures

rise above 27◦C. This structure is quantitatively similar to the yield response estimated by

Schlenker and Roberts (2009) (see Appendix Figure A6 and the accompanying discussion

for a detailed comparison). Our results suggest that higher crop prices do not meaningfully

offset yield losses caused by high temperatures, perhaps because regional crop markets are

well-integrated and local yield losses do not substantively alter prices. Thus, reductions

in county crop yields as estimated by Schlenker and Roberts (2009) translate essentially

one-for-one into revenue reductions.

In the bottom left panel of Figure 9, we examine how net farm income per capita in

levels31 responds to daily temperature and estimate that it declines $21.07 for each day

above 30◦C. The structure of the response differs somewhat from that of crop income: we

observe a fall in net farm income starting at temperatures around 20◦C. We lack the data

31Net farm income is not analyzed in logs because many observations are negative.
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to test mechanisms that could explain these differences at lower temperatures. However,

the observed structure is broadly consistent with the labor productivity response discussed

below and in Stevens (2017). Alternatively, farmers may be increasing expenditure on

inputs to combat the negative impacts of moderate temperatures on yields. Finally, it is

also possible that other productive factors, such as livestock, respond negatively to these

temperatures.

We examine the role of temperature in the generation of non-farm income by using log

non-farm income per capita as the dependent variable (top right of Figure 9). Non-farm

income is relatively flat (albeit noisy) at low temperatures and then declines systematically

at temperatures above 15◦C, the same breakpoint observed for total income. However, the

percentage effect on non-farm income is smaller in magnitude. For example, temperatures

at 25◦C lower annual non-farm income by only 0.021% relative to 15◦C, whereas the anal-

ogous loss of annual total income is 0.058%. These non-farm income estimates are broadly

consistent with the labor supply response documented by Graff Zivin and Neidell (2014)

(see Appendix for a detailed comparison) as well as with non-agricultural labor productivity

responses from factories and lab experiments (e.g. Parsons, 2014).

Finally, in part motivated by a century of experiments that implicate temperature in

influencing manufacturing worker productivity (Huntington, 1922; Parsons, 2014), we esti-

mate how the marginal effect of temperature on non-farm income evolves with changes in a

county’s manufacturing share. Specifically, we use County Business Patterns (U.S. Census

Bureau, 1969-2011) to calculate the ratio of manufacturing payroll to total payroll (in 2011

dollars) over the time period 1969–2011. We then add an interaction term between each

temperature bin and manufacturing payroll share to our baseline specification to identify a

component of temperature-related non-farm income variation that projects systematically

onto the spatial distribution of manufacturing. The interacted effects, shown in the bottom

right of Figure 9, indicate an inverted-U shaped relationship between manufacturing income

and daily temperature that peaks around 9-12◦C (48.2-53.6◦F) and declines roughly 1% per

1◦C of warming, the estimated effect of temperature if all non-farm payroll were in manu-

facturing. These results indicate that the net negative effects of cold or hot temperatures

on non-farm income tend to increase with a county’s average manufacturing share, perhaps

due to previously documented effects on the manufacturing PPF via labor productivity.

Notably, the lower optimum could also in part be driven by the effects of temperature on

non-labor factors or on factor reallocations within or across industries.

6.2 Evidence of specific substitutes for climate in production

A complementary strategy for understanding the determinants of the marginal product of

temperature is to examine how allocation decisions embodied by b influence the observed

marginal product. If populations adjust b∗ in response to their temperature distribution
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while maximizing production, then some factors in b must be effective substitutes for certain

dimensions of C. Optimizing populations will substitute human-made capital for “natural

capital” (Hartwick, 1977; Solow, 1991), where natural capital in this context are dimensions

of Ci.

To that end, we look for empirical evidence of such behavior by examining how the

marginal product of temperature changes based on the allocation of specific factors thought

to be substitutes for climate.32 Specifically, we consider the effectiveness of two potential

substitutes to climate in the production process: air conditioning and urbanization. The

potential of the former to substitute for climate is intuitive. Urbanization is a more complex

phenomenon that is surely not driven purely or even primarily by the desire to adapt to

climate. Nonetheless, urbanization is likely to alter the effects of climate on the production

process by altering the organization, density, and composition of economic activity in such

a manner that it becomes less affected by temperature (Kahn, 2013; Deschênes et al., 2011).

Air conditioning We classify the counties in our sample into three groups based on resi-

dential air conditioning (AC) penetration rates reported in the 1980 Census:33 (1) 60% or

less, (2) 60–80%, and (3) 80% or more. The last group consists almost exclusively of counties

in Florida, Kansas, Louisiana, Oklahoma, and Texas. We then estimate a version of Equa-

tion 17 where we interact indicators for each of these three groups with contemporaneous

temperature and precipitation bins.

The results for total income per capita, farm income per capita, and non-farm income

per capita are shown in Figure 10. Counties with AC penetration rates below 60% and

60%-80% show similar susceptibility to high temperatures with respect to total income,

both to each other and to the pooled sample (Panels A-B). Counties with the highest AC

penetration rates, on the other hand, appear to be half as susceptible to such temperatures,

although these estimates are noisier (Panel C).

The next six panels show separate results for farm and non-farm income. Farm income

responses vary somewhat across these groupings (Panel D-E), but all decline at hot tem-

peratures regardless of AC penetration, presumably because AC does not directly benefit

agriculture. By contrast, non-farm income in counties with the highest AC penetration

exhibit essentially no response temperature (Panel I), while counties with lower AC pene-

tration experience declines in non-farm income with higher temperatures (Panels G-H).

Urbanization Next, we classify counties in our sample as “urban” if a majority of their

population lived in an urban area in 2010, as reported by the U.S. Census Bureau.34 41%

32This exercise examines the gradient of the value function when specific elements in b are held fixed.
33This is last complete cross-sectional survey of AC ownership in the US. See Barreca et al. (2016) for a

detailed discussion.
34To our knowledge, this statistic is not available in earlier years.
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Figure 10: Estimated effects on various income measures by 1980 residential air conditioning
penetration, as reported by the 1980 Census. Dashed lines correspond to the pooled estimate
from Figure 4. Results for all subsamples (within a single row) are jointly estimated. Shaded
areas are 95% confidence intervals.

of U.S. counties are “urban” by this definition. As with AC penetration, we interact the

contemporaneous temperature and precipitation bins with urban/rural indicators to esti-

mate two value functions: one that applies to urban counties and one that applies to all

other counties. The results for log total income per capita are shown in Figure 11. Rural

counties are slightly more susceptible than average to the hottest temperatures, although

the differences are not statistically significant (left panel). By contrast, point estimates for

urban areas suggest a lower susceptibility to heat (center panel).

Additionally, we experiment with an “ultra-urban” category for counties with population

density above the 90th percentile (averaged over the sample). Counties at the top of the

population density distribution also exhibit income losses at warm and hot temperature

(right panel), although effects at the highest temperatures are somewhat reduced.
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Overall, our results suggest that AC penetration is a more important predictor of income

sensitivity to heat than urbanization, although both matter. Because allocation of resources

toward AC is primarily a direct response to warmer temperatures, the costs and benefits of

such allocations will be implicitly captured by the “full adaptation model” that allows the

value function to curve. In the full adaptation model, the reduction of income-sensitivity

with AC adoption is captured by the reduction in marginal effects for hot locations (re-

call Figure 8), to the extent that these investments are driven by climatic conditions. It

is less obvious that the influence of urbanization is explicitly captured in the previously

estimated “full adaptation” value function. Rather, our main estimates simply reflect av-

erage treatment effects integrated over the current (uncorrelated) spatial distribution of

urbanization and climates. Thus, to account for the effects of all endogenous adaptations

to temperature—including AC—as well as for the influence of urbanization in our valua-

tions of the current and future climate (below), we estimate a “full adaptation” version of

the value function that contains seperate curved surfaces for both urban and non-urban

counties.

7 Valuing current and future climates

The stability of our estimates for expected income suggests that most, if not all, county-

level economies lie on a coherent V (C) surface offset by a county-specific constant µi,

which captures all other county-specific factors. By applying our estimates for the marginal

product of climate d̂V (C)
dC along a line integral through the climate space C (Equation 15),

we can trace out a non-marginal change in income for county i if the climate were displaced

from an initial value Ci1 to a alternative climate Ci2, net of all adaptive adjustments in b∗i
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(which we do not need to observe directly) along the path:

∆Yi =

∫ Ci2

Ci1

d̂V (C)

dC
dC,

where either Ci1 or Ci2 is the current climate and the other is the counterfactual.

We compute ∆Y for two counterfactual climates. First, we consider how much current

daily temperature distributions contribute to current production by displacing the climate

of a single benchmark county (Ci1 = C0), which provides a common starting point, to the

actual observed climate of each county (Ci2 = Ci). Second, we gradually distort the current

climate of each county along a “business as usual” climate change scenario and compute

how its productivity changes (relative to its historic climate) through 2100. Throughout, we

use estimates from the autoregressive model. As a robustness check, we have replicated our

valuation of the future climate replacing the autoregressive term by 9 additional weather

lags, as in Figure 5. These loss estimates, available upon request, are generally larger.

7.1 Contribution of temperature to current production

To understand how current temperatures contribute to cross-sectional productivity patterns,

we integrate our fully non-linear estimate of d̂V (C)
dC from the benchmark historical climate

of Lebanon, Kansas (C0) to the historical climate of each US county (Ci), both averaged

over 1968-1990. We choose Lebanon simply because it is the geographic centroid of the

country, making the results of this comparison easy to visualize; the relative contributions

of temperature climates to counties’ economies do not depend on the benchmark county.35

The left panel in Figure 12 depicts the difference in income between each county and

Lebanon, KS (marked with a black circle) that is attributable to differences in daily tem-

perature distributions. Colors represent the income change a county would exhibit as the

climate of Lebanon is smoothly transitioned to the climate of each county in our pooled

“full adaptation” model. Thus, the map depicts the “height” of the value function evaluated

at historical climates across the country, after all county-specific differences (µi) and adap-

tive adjustments (b∗) have been accounted for. Note that while the underlying model uses

only marginal within-county variation in daily temperature distributions, it yields clear and

sensible non-marginal between-county differences regarding the value of their climates. The

white band of counties, stretching through the corn belt, south of Appalachia, and up to the

Mid-Atlantic states, indicates temperature climates that are similar in economic value to

Lebanon. South of this band, the value of climate declines as the number of low-productivity

hot days increases, with locations along the Gulf Coast losing more than $1000 per capita

(2011 dollars) in annual income, relative to Lebanon. Note that these values fully account

35The choice of benchmark county is unimportant because it is a constant of integration that is differenced
out in cross-county comparisons of ∆Yi.
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Figure 12: Value of historical county climates relative to the climate of Lebanon, Kansas
(black circle). The left map uses the third-degree polynomial pooled model. The right map
uses a third-degree polynomial model interacted with a county’s urban status.

for the curvature in V (C), which includes changes in the marginal effect of additional hot

days due to adaptation. North of the white zero-band, counties earn higher incomes due to

their climate, largely due to the reduction or elimination of hot days, with the climate of

locations along the Pacific, Rockies, Great Lakes, and New England generating $500-1000

or more per capita annually.36

The right panel of of Figure 12 shows an analogous calculation, but one that conditions

the value of the climate on whether a county is urban or not. Using this approach, regional

patterns are largely unchanged, but, consistent with Figure 11, urban locations exhibit

a more muted version of regional patterns. The distribution of urban counties does not

appear systematically correlated with climatic conditions, so we find it useful to think of

this installed urban capital as being determined by some orthogonal optimization that we

do not observe. The pooled model (left panel) can thus be considered the a priori valuation

of each county’s climate if the urban-rural status of each county were unknown, whereas the

stratified model (right panel) is a valuation where the status of current urban investments

is known in advance.

7.2 Production distortions due to future warming

Next, we use 44 different climate change scenarios from Hsiang et al. (2017), constructed to

emulate the probability distribution of global climate sensitivities, to project how output

will change due to future warming in RCP8.5 (“business as usual”) relative to a coun-

36As discussed earlier in footnote 28, accounting for the dynamic effects of these income losses would
increase their magnitude by a factor of 5.
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terfactual where temperatures remain at historical levels. For each county, the scenarios

report the expected number of days in each 1-degree-Celsius temperature bin in 2080-2099.

We aggregate this distribution to the 3-degree temperature bins used in our estimates and

use the empirical 1969-1990 distribution of temperatures in each county as the no-climate-

change counterfactual. We assume that warming begins in 1991, is linear in the number of

days in each temperature bin, and converges to the 2080-2099 distribution in 2090 since it

is the midpoint of the interval. This approach smoothly and realistically transitions daily

temperature distributions while maintaining a total count of 365 days in each year of the

projection. We use three discount rates (1%, 3%, and 5%) to probe the sensitivity of the

projections to this important parameter and calculate the net present value (NPV) of lost

income relative to the no-climate-change scenario. We multiply the per-capita estimates by

the county’s actual (t ≤ 2011) or projected population (t > 2011), assuming county-specific

linear population growth.

We apply the warming projections to the constant marginal effects model and the full

adaptation model, in both cases pooling all counties together. These two simulations allow

us to see the effect of accounting for adaptation costs and benefits. To account for the

estimated substitutability of climate and current urbanization, which is not correlated with

the temperature and thus not accounted for in the full adaptation model, we also create

projections using the full adaptation model interacted with an urban indicator and current

patterns of urbanization are held fixed into the future.

The spatial distribution of NPV for the median climate trajectory (in terms of the total

income loss) is shown in the first column of panels in Figure 13. The units are billions of

2011 dollars. Rows indicate the specification used to estimate the value function. Here,

we only display the 3% discount rate case. Spatial patterns are essentially unchanged

with different discount rates, although magnitudes become more exaggerated or muted.

Without accounting for non-linearity or heterogeneity (linear model), the largest aggregate

losses from climate change appear concentrated in the Southwest and the Northeast (dark

red). Some Northern states and many counties in Florida also suffer large losses, and

very few counties see income gains (light and dark blue). However, once we allow the

value function to be curved (full adaptation model), more counties, especially in Texas, are

projected to experience income gains as a result of climate change; allowing for urban-rural

heterogeneity produces yet more gains in urban counties in Gulf Coast states. Consistent

with the earlier discussion of the erroneous “folk theorem,” allowing for curvature in the

value function increases damage projections for initially cool counties, such as the Northeast

and Midwest. This occurs because the value function for these counties becomes steeper

when the relatively flat marginal effects of Southern states are no longer pooled with these

cooler locations (recall Figure 8). Because economic production is more heavily concentrated
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Table 1: Probability distribution of the net present value of national income
losses due to “business as usual” climate change (RCP8.5) through the year
2099

(1) (2) (3)
Discount rate: 1% 3% 5%

Panel A: constant marginal effects model,
no heterogeneity

10th percentile -43.54 -18.93 -13.55
25th percentile -37.44 -16.33 -11.7
Median -31.52 -13.7 -9.8
75th percentile -26.5 -11.5 -8.22
90th percentile -22.19 -9.61 -6.86

Panel B: “full adaptation” cubic model,
no heterogeneity

10th percentile -60.41 -25.37 -18.17
25th percentile -46.44 -20.94 -15.43
Median -38.96 -17.87 -13.3
75th percentile -31.48 -15.55 -11.61
90th percentile -26.01 -11.98 -8.82

Panel C: “full adaptation” cubic model,
urban-rural heterogeneity

10th percentile -27.32 -10.36 -7.15
25th percentile -18.26 -7.9 -5.79
Median -13.47 -6.74 -5.16
75th percentile -10.62 -5.35 -4.1
90th percentile -9.11 -4.65 -3.51

Discount rate shown above each column. Values are in trillions of US 2011 dollars.

in the North, allowing for adaptation by letting marginal damages vary by climate has the

net effect of increasing total national income losses.

In contrast, projected changes in farm income (second column of panels in Figure 13)

are extremely similar across the three sets of estimates—consistent with our finding and

the findings of others that some adaptation technologies, such as AC, do not play a major

role in agriculture (e.g. Roberts and Schlenker, 2011; Burke and Emerick, 2016). Very few

counties are projected to gain agricultural income as a result of climate change. The largest

losses are again concentrated in the Southwest, Northeast, and Florida. Comparing the two
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columns, we see that while farm income losses contribute to total income losses, they do not

fully explain their magnitude, especially once heterogeneity and non-linearity are accounted

for. Non-agricultural losses thus play a major role in the projected reductions in economic

output, consistent with prior country-level results (Burke, Hsiang, and Miguel, 2015).

The third column of Figure 13 shows how aggregate income losses (as a percent of annual

income) evolve over time across the 44 climate projections. By definition, income losses are

zero in 1990. In the linear model, losses grow linearly between 1991 and 2099 and range from

3.8% to 12.2% of the no-climate-change counterfactual income in 2099. The median scenario

predicts income losses of 6.3% in 2099. Both projections based on cubic estimates (with and

without urban-rural heterogeneity) display non-linear and non-monotonic patterns and a

wider distribution of projected income losses by 2099. Without accounting for urban-rural

heterogeneity, 2099 losses range from 4.4% to 36% of income (median is 8.0%). Accounting

for such heterogeneity reduces the magnitude of the lower and upper bound of losses to

0.98% and 31%, respectively, and shifts the median to 3.4%.

In Table 1 we present a summary of the distribution of the NPV of aggregate income

losses across all 44 climate projections using each of the three models for the value function

and three different annual discount rates (1%, 3%, and 5%). Units are in trillions of US

2011 dollars. Panel A shows estimates using the constant marginal effects model. With a

3% discount rate, the median NPV of income loss is $13.7 trillion (2011 dollars). At the

10th percentile of the distribution, losses are almost $19 trillion, and at the 90th percentile

losses are estimated at $9.6 trillion (higher percentiles are more positive). The NPV of

losses is more than two times larger when we use a discount rate of 1% rather than 3%.

Conversely, using a rate of 5% yields losses that are about one-quarter to one-third lower.

Accounting for adaptation by allowing for a cubic relationship between income and the

number of days in a temperature bin (Panel B) increases income loss estimates. As discussed

above, this occurs because the marginal effects of warming for the high temperature bins

are negatively correlated with counties’ overall economic output. However, adding urban-

rural heterogeneity while still allowing for a cubic relationship (Panel C) reduces projected

losses, yielding the smallest loss estimates. This adjustment substantially reduces total costs

because economic activity is concentrated in urban counties, and allowing for heterogeneity

reduces marginal damage from warming in these counties. Specifically, the median NPV

of income losses is $6.7 trillion at a 3% discount rate and ranges from $4.7 trillion at the

90th percentile to $10 trillion at the 10th percentile. Varying the discount rate affects the

estimates in Panels B and C similarly to Panel A.
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8 Discussion

Previous analyses of how an economy is influenced by its climate have struggled to simulta-

neously account for unobservable factors that differ across locations and the overall impact,

net of costs, of adaptive adjustments. Here we developed a general reformulation of the

problem that delivers both with respect to the role of the climate in economic production.

Applying this approach to estimate the role of daily temperature distributions for market

output in the modern US, we recover the marginal product of climate and demonstrate how

it can be integrated to recover the overall impact of non-marginal climate changes.

There are several limitations to our analysis. First, our results depend on competative

markets being efficient in the long run, following Arrow and Debreu (1954). For example,

we assume agents have perfect information about the climate they inhabit, that capital

can be rented at annualized costs, and that if there are profitable opportunities they will

be seized. Without these assumptions, our Envelope Theorem result, which depends on

firms optimizing and markets clearing, may no longer hold exactly. Future work should

examine how market distortions, imperfect information, and the incomplete rationality of

decision-makers may alter these findings.

It is also important to note that our estimates capture only the impact of shifting

temperature distributions. Any present or future influence of other climatic factors—such

as storm frequencies, sea levels, or drought—are omitted. In principle, it is straightforward

to extend this approach to additional dimensions of the climate, something we view as an

avenue for future work.

We also assume that disturbances due to weather are “small” such that they do not

move the economy “too far” from its equilibrium. This assumption guarantees that the

Envelope Theorem holds, and its validity depends on the spatial and temporal scale of

analysis as well as how weather and climate relate to the economy. We chose to demonstrate

our approach using annual distributions of daily temperature, described with temperature

bins, in part because perturbing an annual temperature distributions by shifting a few

days from one bin to the next is plausibly a “small” perturbation in an otherwise large

space of possible temperature distributions.37 This notion is confirmed by our finding

that shifting individual days results in only fractional and temporary changes in annual

percentages of income. Yet this assumption might not necessarily hold for all dimensions

of climate—for example, hurricanes and mega-droughts may not be sufficiently “small”

economic perturbations for our approach to be applicable (Hornbeck, 2012; Deryugina,

Kawano, and Levitt, forthcoming).

Importantly, our results do not represent welfare effects. Our focus is characterizing the

37The size of this space, in terms of dimension, can be controlled by using more or fewer bins.
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contribution of the temperature climate to aggregate economic production, as captured by

total market revenue. Other analyses consider the economic value of the climate in welfare

terms (e.g. by using an Integrated Assessment Model) and/or account for non-market

effects, such as increasing economic inequality, degraded ecosystems, higher crime, or the

loss of life (Anthoff, Hepburn, and Tol, 2009; Hsiang et al., 2017). These factors may be

substantially affected by the temperature climate but are not accounted for in the present

analysis beyond any influence they have on the structure of the PPF or aggregate demand.

One of the contributions of our analysis is to account for all of the allocative adjustments

made within a macroeconomy to cope with a change in the same county’s climate. Our em-

pirical implementation focuses on a large number of “small” macroeconomies, US counties,

within which a large number of possible allocations exist. There is, however, interest in

allocative adjustments across larger spatial scales, such as the reallocation of production or

labor (via migration) across regions (Desmet and Rossi-Hansberg, 2015; Costinot, Donald-

son, and Smith, 2016; Dingel, Hsiang, and Meng, 2017; Desmet et al., 2017). Our theoretical

analysis is also directly relevant for these larger scales, as the domain of the macroeconomy

under consideration can be expanded to contain a larger region with no other adjustment

needed (e.g. Burke, Hsiang, and Miguel, 2015).

Finally, it is crucial to acknowledge that future, unknowable technological innovations

that may affect the marginal product of climate are unlikely to be captured in our em-

pirical analysis. Theoretically, new technologies can be incorporated into our framework

by increasing the dimensionality of B to allow for allocations towards a new type of tech-

nology (which has infinite cost prior to discovery). However, it is not possible for us to

empirically explore the structure of the value function in the subspace of B corresponding

to a not-yet-existent technology. Nonetheless, future innovations might be captured to the

extent that they are represented in the present marketplace. For example, valuations of

assets (e.g. stocks, land values) reflect market beliefs about the future trajectory of tech-

nology and affect allocation decisions within the present market. Additional work should

explore the extent to which current allocations may be informative about the path of future

technologies and their potential role in altering the marginal product of climate.
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Appendix (For Online Publication)

This appendix supplements the main text with the following six sections:

• A1 - Relationship of this formulation to prior work

• A2 - Example value function in a two-dimensional climate

• A3 - Data Appendix

• A4 - Additional features of the economic response to temperatures

• A5 - Quantitative comparison of agricultural and non-agricultural effects

on the PPF

• A6 - Point estimates for key results

A1 Relationship of this formulation to prior work

Seminal analysis by Mendelsohn, Nordhaus, and Shaw (1994) attempted to directly estimate

Equation 8 in a cross-sectional nonlinear regression of farm profits on a vector Ĉ that

captured average seasonal temperatures and rainfall. This approach essentially specifies that

average temperatures and rainfall are sufficient statistics to reconstruct, through application

of ψ(.), the full distribution of actual weather c relevant to farm value. If, conditional on

observable characteristics included in the regression (such as soil quality), farms are identical

and only the first moments of temperature and rainfall are relevant to output, then this

approach will recover the shape of V (C) net of all adaptation costs and benefits.

Schlenker, Hanemann, and Fisher (2006) expanded on this cross-sectional approach by

adopting a more sophisticated structure for ψ(.), whereby degree-days above and below two

specified temperature cutoffs are considered sufficient statistics Ĉ for estimation of V (C).

Deschênes and Greenstone (2007) raise the concern that that different farm units may

not be comparable, even conditional on observable traits, leading to potential bias in these

earlier regression frameworks. To circumvent this issue, they propose to use a within-

unit panel regression approach that differences out any constant unobserved heterogeneity

between farm units. To implement this, the authors assume Ĉ = cit and then estimate

a version of Equation 8 exploiting random variation in cit. In their implementation, the

authors used first moments in temperature and rainfall to summarize weather, analogous

to Mendelsohn, Nordhaus, and Shaw (1994). A concern raised by later authors was that

endogenous responses to climate changes captured by re-optimization of b∗(C) would not

be captured in this framework, since farmers can differentiate between temporary changes

in cit and long-term changes in C.
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Schlenker and Roberts (2009) and Deschênes and Greenstone (2011) expanded on the

approach of Deschênes and Greenstone (2007) by adopting sophisticated structures for

ψ(.) to capture nonlinear responses of crop yields and human mortality, respectively, to

temperature. These contributions did not directly address adjustments of b∗(C).

Analyses by Aroonruengsawat and Auffhammer (2011), Hsiang and Narita (2012), and

Barreca et al. (2016), along with others, built on these contributions by accounting for

some re-optimization of b∗(C) in a panel framework where the partial effect of cit on the

outcome, in an analog to Equation 8, is estimated directly, allowing this effect to vary as a

function of C—thereby capturing some influence of b∗(C) by proxy. While this approach

is able to document the presence of adaptive behaviors, it has now been recognized that it

cannot fully capture changes in V (C) because the costs of adjusting factors b is unobserved

by the econometrician (Houser et al., 2015).

Dell, Jones, and Olken (2012) and Burke and Emerick (2016) also expand on the ap-

proach of Deschênes and Greenstone (2007) by using a long (multi-year) period of obser-

vation t when constructing Ĉ = cit, arguing that the period is sufficiently long that b∗(C)

would have plausibly adjusted. Neither analysis recovers evidence of such adjustment, con-

cluding that such adjustments are absent. However, even if evidence of adjustment had

been found, it would not be possible to evaluate the costs (and thus net benefits) of these

adaptations.

Thus, a systematic challenge to evaluating the economic value of climate has been the

inability to simultaneously account for unobservable heterogeneity while also accounting for

adaptive re-optimization of b∗ in a manner that fully accounts for both costs and benefits

(Hsiang, 2016). We solve this challenge in a single framework by carefully constructing the

appropriate ψ(.), allowing for nonlinear adaptation at all points in the distribution of fx(.),

and restricting our analysis to an optimized outcome where short-run marginal changes in

cit exactly identify the marginal effect of long-run changes in C.

A2 Example value function in a two-dimensional climate

We extend the graphical depiction of the value function along a North-South road with

a one-dimensional climate (K = 1, developed in Section 3 and shown in Figure 2) to a

two-dimensional climate (K = 2). We continue to have only one dimension of adaptation

(N = 1). Expansion of the climate space by one dimension is useful for developing intuition

for how this approach generalizes as the dimensionality of C increases. Our actual empirical

implementation for the US explores a 16-dimensional climate with unknown N , making it

more difficult to visualize.

Consider a ψ(.) such that the probability distribution of daily temperatures in a year is

summarized by a three-bin histogram, shown in Panel A of Figure A1. C1 is the expected
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Figure A1: Application of the Envelope Theorem to valuing climate. (A) An example climate defined by
a three temperature bin histogram, where the probability distribution of outcomes is fully defined by the
mass in two bins (C1 and C2). (B) Translucent surfaces are production surfaces over the space (C1, C2)
for different values of the control variable b. Production maximizes b = b∗(C1, C2), such that the opaque
triangle (outlined in blue) is the maximum output for each climate position after adaptation, defining the
value function V (C1, C2). Black surfaces highlight regions of V where two individual surfaces represent the
maximized quantities and are exactly tangent to V (i.e. via the Envelope Theorem).

fraction of days with temperature below a cutoff T̄ . C2 is the expected fraction of days with

temperature above T̄ and below a second cutoff temperature ¯̄T . C3 is the expected fraction

of days with temperature above ¯̄T and is fully determined by the first two dimensions of

the climate since C3 = 1 − C1 − C2. The climate vector is therefore C = (C1, C2). The

space of possible climates is then the unit 2-simplex:

C = {(C1, C2) | C1, C2 ∈ [0, 1], C1 + C2 ∈ [0, 1]}.

Let there remain only one dimension of possible adaptive adjustment b = b.

Depicting Y (C,b) = Y (C1, C2, b) now requires four dimensions. Panel B of Figure A1

depicts multiple semi-translucent surfaces, each a function over the 2-simplex C, holding a

value of b fixed. The height of the nth surface at a point (C1, C2) is the level of output the

economy would exhibit for the climate (C1, C2) if b = bn. Optimization of output would

lead to selection of b = b∗(C1, C2) for each position in C, causing the actual economy to

exhibit production that matched the highest surface at each position, corresponding with

the opaque blue-green curved triangle surface that is outlined in blue. This two-dimensional
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Table A1: Summary statistics for key variables

(1) (2) (3) (4) (5)
Mean Std.

Dev.
Min Max Obs

Population 111,722 341,233 209 9,889,056 76,646
Personal income per capita 26,806 8,438 6,356 136,936 76,646
Non-farm personal income per capita 16,710 10,549 2,738 336,356 76,646
Percent of personal income that is non-farm income 61.67 27.53 8 916 76,646
Percent of personal income that is wage/salary income 45.16 22.59 9 757 76,646
Percent of personal income that is farm income 5.24 8.66 -235 77 76,646
Percent of personal income that is rents 18.15 5.93 2 123 76,646
Percent of personal income that is transfers 16.88 6.38 2 65 76,646

Source: Regional Economic Information Systems. Unit of observation is a county-year. All monetary
amounts are in 2011 dollars.

surface is the value function

V (C1, C2) = Y (C1, C2, b
∗(C1, C2))

and it is the two-dimensional analog to the one-dimensional blue ridge-line in Figure 2 of the

main text. This curved triangle is the upper envelope of all the production frontiers across

all values of b, where individual surfaces of Y (C1, C2, bn) are exactly tangent to the value

function for those positions in the climate space (C1, C2) where bn = b∗, as was described

by Equation 13. For example, the black translucent surface labeled Y (C1, C2, b2) lies below

V for almost all positions in C, but defines the maximum value obtainable for the small

band labeled b2 = b∗, where the surfaces are exactly tangent. This tangency is the result

of Equation 13, which allows the shape of the value-function to be measured locally by

exploiting two-dimensional perturbations (ξ1, ξ2) caused by weather without consideration

for any adaptive adjustment of b.

A3 Data Appendix

Here, we discuss our data in more detail. Table A1 presents summary statistics for the key

variables in our sample. Recall that wage and salary data in REIS are largely derived from

employers reporting wage and salary payments for the purposes of unemployment insurance.

There are only five industries that are not fully subject to such reporting requirements:

agriculture, railroads, the military, private education, and religious organizations. Other

data are used to infer wages and salaries in the uncovered portions of these industries.

Typically, an employer will report wage and salary payments by county and by industry,

resulting in very accurate county-level estimates. In a few cases, an employer will file an

unemployment insurance report for the whole state, rather than by county. In that case,
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the state total will be allocated to counties based on the industry’s share in each county.

In the REIS data, total personal income is reported on a place-of-residence basis, while

wage and salary payments and other income components are reported by place of work. The

residence adjustment is made using US Census estimates of worker commuting behavior. As

a result, the components of personal income can sometimes exceed total personal income.

For agricultural income, there exist states where estimates at the state level are allocated

to counties using weights derived from the Census of Agriculture. For some commodities,

Agricultural Census data are interpolated to create intercensal estimates. Because these

procedures may mask some impacts of weather shocks, our estimates for the effects of

temperature on farm income should be viewed as a lower bound.

We also obtained data on total transfers from government to individuals from the

REIS, the analysis of which is relegated to the next section of this Appendix. These

transfers include unemployment insurance, which in turn consists primarily of standard

state-administered unemployment insurance schemes, but also includes unemployment com-

pensation for federal employees, railroad workers, and veterans. Government transfers also

include income maintenance (which includes Supplemental Security Income, family assis-

tance, and food stamps), retirement and disability insurance benefits, public medical ben-

efits other than Medicare, Medicare, veterans’ benefits, and federal education and training

assistance. In addition, the United States has an extensive crop insurance program that

has been greatly expanded over the past 30 years. Insurance plans are sold by private

companies, but are heavily regulated and reinsured by the US government. We obtain an-

nual county-level data on crop insurance indemnities for the years 1990–2011. These are

publicly available from the Risk Management Agency of the USDA. Finally, Congress has

also passed numerous ad hoc disaster bills to give aid to farmers who suffered crop losses,

regardless of whether they had insurance. County-level crop-related disaster payments for

the years 1990–2010 are from USDA Farm Services Agency administrative data, obtained

through a Freedom of Information Act request.

A4 Additional features of the economic response to temper-

atures

Here we consider the marginal effect of daily temperature distributions on earnings, trans-

fers, and the effect of temperature in neighboring counties.

Earnings Earnings make up the majority of personal income. In Figure A2 we display the

effect of daily temperature on earnings per capita in current and prior years. Qualitatively,

the structure of the earnings response is very similar to the total income response in Figure

4, although the magnitudes of the point estimates are larger for earnings. Relative to a day

at 15◦C (59◦F), a day at 29◦C (84.2◦F) lowers annual earnings by roughly 0.11%. Assuming
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uniform output across 365 days, this estimate suggests that the hotter day results in roughly

40.0% lower daily earnings. This represents a linear decline of daily earnings at a rate of

roughly 2.9%/◦C above 15◦C. Similar to total income, we see no systematic response of

earnings to daily temperatures in the prior year, except possibly to very hot days with

average temperatures exceeding 30◦C.

Figure A3 shows the structure of temperature lags relative to the AR1 response for log

earnings per capita (analogous to Figure 5 in the main text). As before, we focus on the

top four temperature bins and normalize the contemporaneous effects to 100. The results

are very similar to those for log total income per capita: the temperature effect decays

somewhat faster over time relative to other idiosyncratic income shocks, but overall the lag

structures look fairly similar.

Transfers from government Prior studies have found that federal government trans-

fers increase following natural disasters (Healy and Malhotra, 2009; Deryugina, 2017), but

whether temperature changes lead to a systematic change in the distribution of transfers

from the government generally is unknown. In particular, it is plausible that transfers might

offset some income losses due to temperature such that we do not observe them—if such

masking is occurring it would cause us to under-estimate the marginal product of temper-

ature in our main analysis. To examine whether government transfers might be affecting

our estimates, we obtain multiple types of data on transfers, including various types of

unemployment insurance, Medicare, federal crop insurance, and ad hoc disaster transfers

directed by Congress, as described earlier in the Appendix. Figure A4 shows that daily tem-

peratures have no effect on county-level annual transfers from the government (excluding

crop-related payments) or on county-level spending on public medical benefits. However,

we find evidence that ad hoc crop disaster payments increase as a results of very hot days

(> 30◦C), while crop insurance payouts increase steeply for days that exceed 27◦C (80.6◦F).

The latter estimates suggest that county-level farm income losses would be roughly 25%

higher if crop insurance were not available.

Spatial displacement Our model can be generalized to include information on neigh-

bor’s realizations xi+1,t in the construction of county climate Ci or weather cit, if such

measures are economically relevant to production Y at i. One plausibly important mech-

anism through which this could occur is if economic activity is displaced from one county

into neighboring counties when temperatures change. Thus, we examine whether there is

any evidence for spatial displacement of economic activity across county borders due to

temperature by estimating a spatial lag model where income is regressed on the average

count of county-days in each temperature bin within five 100km-wide annuli surrounding

each county (in addition to all controls and temperature measures in our baseline model).

The results for hot temperature bins, shown in Figure A5, indicate that high temperatures
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continue to have a negative effect on own income even when accounting for neighbors’ tem-

perature. Further, we do not recover evidence of spatial displacement. If anything, there

is some evidence that high temperatures in neighboring counties have negative effects on a

county’s own income, either because of negative spillovers across counties that experience

high temperature days or because neighbors’ temperatures are a proxy measure for some

other temporary environmental condition that negatively affects income but is not captured

by our benchmark model, such as the length of hot spells.

As noted in Section 8 in the main text, one approach for addressing the possibility of any

spatial displacement of economic activity is to increase the spatial-scale of aggregation such

that any displacement remains contained within the macroeconomy under consideration.

The primary drawback of such an approach is that it limits the number of observations

available and the extent to which the data span C. A benefit of such an approach is that at

larger scales of aggregation, the Envelope Theorem will hold with increasing accuracy, as

allocative decisions within the economy become increasingly continuous.38 Theoretically,

there is no reason why the entire world economy could not be utilized as the unit of analysis,

thereby capturing the net effect of all possible spatial displacements.

A5 Quantitative comparison of agricultural and non-agricultural

effects on the PPF

Here, we compare both the structure and magnitude of farm and non-farm incomes’ re-

sponses to temperature (see Figure 9) to earlier results by Schlenker and Roberts (2009)

and Graff Zivin and Neidell (2014). To facilitate comparison, we reproduce the main results

of both studies in Figure A6 (left and right panel, respectively).

It is worth noting here that Graff Zivin and Neidell (2014) obtain data on the quantity

of labor supplied but cannot observe labor effort, i.e. the productivity of labor supplied.

Almost a century of lab studies indicate that the labor productivity response to temperature

is qualitatively similar in structure to the response reported in Graff Zivin and Neidell (2014)

(Mackworth, 1946; Huntington, 1922; Seppanen, Fisk, and Lei, 2006; Parsons, 2014). Thus,

the total labor effects on income may be larger than the estimates in Graff Zivin and Neidell

(2014) suggest, but the overall structure of the response should be similar.

Crop and Farm Income The decline in crop income explains a significant share (but

not all) of our main result for total income: Figure 9 indicated that a 30◦C day reduces

annual crop income by 0.523% but lowers total income by only 0.076%. This large decline in

crop income is broadly consistent with the magnitude of changes reported by Schlenker and

Roberts (2009), although a direct comparison is difficult because of the difference in how

temperature effects are measured. The estimated effect in Schlenker and Roberts (2009) is

38We thank Michael Roberts for pointing this out.
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major crops, reproduced from Schlenker and Roberts (2009). Yield effects are depicted as
the effect of 24 hours at exact temperatures. Right: Change in minutes of labor supplied
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outdoor temperatures (includes manufacturing). Compare to Figure 9 in the main text.

the yield effect of 24 hours at each exact temperature. Because 24 hours at 35◦C reduces

annual yields by roughly 0.03 log points (an approximate average across the three crops

Schlenker and Roberts (2009) study), one hour at 35◦C should reduce annual yields by

roughly 0.03
24 = 0.00125 log points. A day with average temperature of 29◦C might have

roughly one hour at this higher temperature during the day’s peak temperature, and we

estimate that such a day would cause crop income to decline by 0.00187 log points. Thus,

while we cannot make a perfect comparison between these two sets of results, this back-

of-the-envelope calculation is consistent with the hypothesis that high-temperature yield

declines cause a decline in income that is not offset by rising prices.

The slightly higher breakpoint of 29-32◦C in Schlenker and Roberts (2009) and its

steeper decline is likely because the authors use hourly temperature, whereas our analysis

uses daily averages. Because days with 24-hour average temperatures of 27◦C are likely to

have some hours above 29◦C, we would expect to observe declines on days with average

temperatures of 27◦C in our analysis, even if crop yields do not deteriorate until the hourly

temperature reaches 29◦C. Thus, we interpret our results in Figure 9 as consistent with the

crop yield response reported by Schlenker and Roberts (2009).

Non-Farm Income Our estimated effect of temperature on non-farm income is roughly

four times larger than what one might expect based only on previous labor supply results,

which is consistent with the notion that unmeasured labor productivity effects are com-

parable or larger in magnitude to documented labor supply effects. According to Figure

9 in the main text, a day with an average temperature of 25◦C causes annual non-farm
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income to fall by 0.000213 log points, which corresponds to a loss of 7.8% of an average

day’s non-farm output (0.000213
1/365 = 0.078), relative to the optimum temperature. Maximum

temperatures on such a day might reach low 30’s or even 35◦C. Based on results reported

by Graff Zivin and Neidell (2014), daily maximum temperatures in this range might result

in a roughly 30-minute drop in labor supply, or 6.5% of the average 7.67 hour workday

among workers who spending a significant amount of time working outdoors. Because these

thermally-vulnerable workers — termed “high risk” in Graff Zivin and Neidell (2014) —

constitute 28% of the national workforce (Houser et al. (2015)), a randomly selected worker

would on average supply 1.8% less work on this hot day, which is roughly one fourth of the

7.8% loss of non-farm income that we document.

As with the crop yield response, the breakpoint documented by Graff Zivin and Neidell

(2014) (∼25◦C) is a higher temperature than what we observe in non-farm income (15◦C).

This difference is likely due in part to Graff Zivin and Neidell (2014) using daily maximum

temperature rather than daily average temperature as we do—although the 10◦C difference

might be too large relative to normal diurnal temperature variations to be fully explained

by this fact alone.39 It is possible that changes in the quality of labor, i.e. the intensive

margin, are responsible for this lower turning point: lab studies summarized in Seppanen,

Fisk, and Lei (2006) and Parsons (2014) indicate that productivity begins to decline at

slightly lower temperatures (∼21-22◦C). Finally, we also observe that the point estimate for

non-farm income increases in the hottest temperature bin. However, this point estimate is

noisy and is neither statistically different from zero nor from the negative estimate at the

adjacent temperature bin.

A6 Point estimates for key results

The table below present select point estimates for our main models (columns 1-3), for a

model where the dependent variable is log earnings per capita (column 4) and for a model

where we do not apply the log transformation to total income per capita (column 5). All

other estimates are available upon request.

39The average difference between the daily average and maximum temperatures in our sample is about
6.5◦C. A difference of 10◦C is slightly above the 90th percentile in that distribution.
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Table A2: The effect of temperature on income

(1) (2) (3) (4) (5)

Personal
income (log),
×100

Farm income Non-farm
earnings

(log)×100

Earnings
(log)×100

Personal
income

above 30◦C -0.076*** -21.01*** -0.0009 -0.123*** -22.19***
(0.013) (3.14) (0.0104) (0.020) (3.47)

27 to 30◦C -0.065*** -15.34*** -0.0159** -0.109*** -18.46***
(0.011) (2.40) (0.0065) (0.017) (2.88)

24 to 27◦C -0.058*** -11.82*** -0.0213*** -0.087*** -15.65***
(0.010) (2.30) (0.0059) (0.016) (2.71)

21 to 24◦C -0.029*** -6.43*** -0.0119** -0.039*** -7.54***
(0.009) (1.99) (0.0054) (0.014) (2.38)

18 to 21◦C -0.031*** -5.77*** -0.0118** -0.038*** -8.40***
(0.009) (1.99) (0.0053) (0.014) (2.48)

15 to 18◦C -0.011 -2.06 -0.0041 -0.007 -3.58*
(0.008) (1.75) (0.0052) (0.013) (2.12)

9 to 12◦C -0.004 -1.47 -0.0086* -0.002 -0.92
(0.008) (1.75) (0.0051) (0.012) (2.19)

6 to 9◦C -0.000 -0.17 -0.0094* 0.008 -1.66
(0.008) (1.70) (0.0053) (0.012) (2.25)

3 to 6◦C -0.007 -1.86 0.0010 -0.009 -3.12
(0.009) (1.95) (0.0057) (0.013) (2.46)

0 to 3◦C -0.012 -3.18 -0.0042 -0.018 -3.93
(0.009) (1.98) (0.0060) (0.015) (2.60)

-3 to 0◦C -0.020* -4.44** -0.0174*** -0.039** -5.50**
(0.010) (2.24) (0.0065) (0.016) (2.79)

-6 to -3◦C -0.032*** -6.58** 0.0003 -0.035* -10.42***
(0.012) (2.65) (0.0079) (0.018) (3.28)

-9 to -6◦C -0.027** -3.90 -0.0010 -0.019 -7.86**
(0.012) (2.91) (0.0088) (0.020) (3.55)

-12 to -9◦C -0.014 -2.48 -0.0108 -0.024 -2.59
(0.017) (3.61) (0.0100) (0.026) (4.62)

-15 to -12◦C 0.013 3.50 0.0172 0.001 5.17
(0.027) (6.38) (0.0140) (0.044) (7.32)

below -15◦C 0.023 8.59 -0.0112 0.038 7.10
(0.027) (6.36) (0.0096) (0.042) (7.01)

Observations 76,576 76,576 76,576 76,573 76,576
R-squared 0.587 0.26 0.8534 0.618 0.70

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Standard errors (in parentheses) clustered by
county and by state-year. All outcomes are in dollars per capita, with columns indicating whether a log
transformation was applied. Controls include year and county fixed effects, lagged weather variables and
the lagged dependent variable. Omitted category is 12-15◦C.
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