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The probit is generally considered to be one
of the easiest nonlinear maximum likelihood
problems. Nonetheless, in the course of at-
tempting to replicate G. S. Maddala’s (1992, pp.
335–38) probit example, Houston Stokes (2003)
encountered great difficulty. Of the six coeffi-
cients, five coefficients/standard errors he could
duplicate, but the sixth was off by more than
rounding error. So he tried another package.
And another. And another ... . Finally, five dif-
ferent packages had declared convergence to
five solutions that differed only in the sixth
coefficient. Estimates of the sixth coefficient
ranged from 4.4 to 8.1, and estimates on its
standard error ranged from 46 to 114,550.

For each of the packages that produced an
answer, Stokes decreased the convergence tol-
erance and always found that the five coeffi-
cient/standard error pairs did not change, but the
sixth coefficient usually changed appreciably.
Often the sixth coefficient doubled in size, and
the sixth standard error always increased dra-
matically. Curiously, despite large changes in
the sixth coefficient, the LogL (log-likelihood)
did not change.

What could have gone wrong? It might seem
that the problem is overparameterized and that
the sixth parameter is superfluous, but that

would be too easy. In fact, the difficulty is that
for the particular set of data, the maximum
likelihood estimator does not exist, i.e., there is
no set of parameters that maximizes the likeli-
hood.1 Observe that nonexistence was no im-
pediment to five solvers declaring not only that
a solution existed, but that the solution had been
located. For sake of completeness we note that
another two packages did refuse to produce an
answer because they recognized that the maxi-
mum likelihood estimator did not exist—the
developers of these packages had written their
programs to examine the data for possible signs
of nonexistence of the solution. One of the five
packages that produced a solution is similarly
programmed, but it failed to detect the nonex-
istence of the solution.

If something reputedly so simple as probit
estimation can fool such an experienced econo-
metrician as Maddala, then all economists had
best be on their guard, lest they be misled by
their nonlinear solvers. As Stokes’ example
makes clear, from the fact that a computer soft-
ware package produces a solution to an estima-
tion problem, it does not necessarily follow that
the solution is accurate, or even that a solution
exists. Indeed, it has been shown elsewhere
(McCullough, 1999a, b, 2000a; McCullough
and Berry Wilson, 1999, 2002; Vinod, 2000a)
that, even under the most propitious circum-
stances, a nonlinear solver can produce an in-
accurate answer; and in practice, circumstances
rarely are propitious.

Researchers conducting nonlinear estimation
typically make no effort to guard against such
inaccurate answers. We surveyed the past five
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1 Specifically, the data exhibited “quasi-complete sepa-
ration,” a special pattern between the values of the binary
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metrics texts; Russell Davidson and James G. MacKinnon
(2003) is an exception.
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years of this journal, examining articles that
presented the results of nonlinear estimation.
Not a single researcher reported any attempt to
verify the solution produced by his software.
This may be due to the fact that this aspect of
nonlinear estimation is not something in which
most economists are trained. We surveyed ten
econometrics texts; while each advocated the
use of computer software to produce a solution
to nonlinear estimation problems, none sug-
gested verifying the solution produced by a
software package. The general position of
econometrics texts and researchers is that the
“solution” produced by a nonlinear solver may
be accepted uncritically.2 This position needs to
be changed.

Experienced users of nonlinear optimization
routines will vary the default options of the
nonlinear solver: decrease the tolerance, switch
the convergence criterion, change algorithms
and starting values, etc. Another good approach
is to use more than one package to solve the
same problem, as Stokes (2003) suggested. Of
course, using more than one package tends to
raise more questions than it answers for some
procedures, especially those procedures for
which it is well-known that different packages
typically produce different answers to the same
problem, e.g., ARMA models (Paul Newbold et
al., 1994) and GARCH models (McCullough
and Charles G. Renfro, 1999).3 Varying the
default options and using more than one pack-
age, when successful, only locate a possible
solution. Researchers need some means of ver-
ifying a possible solution. In this paper we
advocate four steps that researchers can use to
verify the solution produced by their software.
We apply these steps to an example from the
recent literature.

I. Maximizing a Likelihood

We wish to dissociate ourselves from the
standard textbook approach to nonlinear maxi-
mum likelihood estimation, but first, some
background information is in order. The usual
t-statistics and confidence intervals (Wald inter-
vals) that are produced as output from nonlinear
estimation routines are easy to compute and are
routinely provided by most computer programs,
which explains their popularity. As these t-sta-
tistics and Wald intervals (and also Wald con-
fidence regions) are based on a quadratic
approximation to the log-likelihood, they will
be accurate only if the log-likelihood is approx-
imately quadratic over the region of interest.
When the log-likelihood is approximately qua-
dratic, Wald intervals and likelihood intervals
will be quite similar. When the log-likelihood is
not approximately quadratic—which is more
likely the more nonlinear is the problem—then
the two intervals diverge and the Wald interval
cannot be relied upon safely.

George E. P. Box and Gwilym M. Jenkins
(1976, p. 226) eloquently argued against the
traditional textbook approach:

The treatment afforded the likelihood
method has, in the past, often left much to
be desired, and ineptness by the practitio-
ner has on occasion been mistaken for
deficiency in the method. The treatment
has often consisted of

1. differentiating the log-likelihood and
setting first derivatives equal to zero to
obtain the maximum likelihood (ML)
estimates;

2. deriving approximate variances and
covariances of these estimates from
the second derivatives of the log-
likelihood or from the expectation of
the second derivatives.

Mechanical application of the above
can, of course, produce nonsensical an-
swers. This is so, first, because of the
elementary fact that setting derivatives to
zero does not necessarily produce max-
ima, and second, because the information
which the likelihood function contains is
only fully expressed by the ML estimates
and by the second derivatives of the log-
likelihood, if the quadratic approximation
is adequate over the region of interest. To

2 Some texts hint that solutions might not be accurate.
Ron C. Mittelhammer et al. (2000) alerts the reader to
serious numerical problems that can arise in nonlinear esti-
mation (Sec. 8.13), and provides numerical examples of
some pitfalls (e.g., Examples 8.2.3 and 8.13.3). Davidson
and MacKinnon (1993, pp. 176–78) explains how artificial
regressions can be used to verify first-order conditions for
nonlinear regression, and OPG regressions can be used for
verifying first-order MLE conditions (p. 472).

3 McCullough and Renfro (1999) proposed the use of the
FCP (Gabrielle Fiorentini et al., 1996) GARCH benchmark
as a resolution to this problem. Software developers appear
to be standardizing their GARCH procedures on this bench-
mark, as shown by Chris Brooks et al. (2001). Regrettably,
there are far too few benchmarks.
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know whether this is so for a new estima-
tion problem, a careful analytical and
graphical investigation is usually required.

When a class of estimation problems
(such as those arising from the estimation
of parameters in ARMA models) is ini-
tially being investigated, it is important to
plot the likelihood function rather exten-
sively. After the behavior of a particular
class of models is well understood, and
knowledge of the situation indicates that
it is safe to do so, we may take certain
shortcuts[.]

Other than ARMA models, we are unaware
of any class of models for which the accuracy of
the quadratic approximation has been verified.
This does not mean that all t-statistics from all
nonlinear regressions are invalid; it only means
that they have not been validated. Certainly
such investigations would be of great import,
especially if it was found that the quadratic
approximation did not hold for a certain class of
models. As an example of a specific case, Jur-
gen Doornik and Marius Ooms (2000), who
plotted the likelihood function rather exten-
sively, showed that the quadratic approximation
does not hold in their ARCH, GARCH, and
EGARCH analyses of a stock market index.
Whether this is generally true of GARCH mod-
els is an open question.

Aside from the validity of the t-tests on co-
efficients, obtaining valid point estimates from a
nonlinear regression is more than a matter of
simply letting the computer do all the work.
ARMA models are not necessarily easily esti-
mated: ARMA( p, q) with small q usually is
easy, but even a linear model with AR(1) errors
can have multiple extrema. Box-Cox models
generally are not too much trouble, as long as
the likelihood is concentrated. Doornik and
Ooms (2000) suggested that GARCH models
may be prone to multimodality, which would
greatly complicate their estimation. A user
ought not just accept the program’s output un-
critically; rather, the user should interact with
the software to test and probe the putative so-
lution before accepting it. Too often, research-
ers simply accept at face value a software
package’ s declaration of “convergence” and
think that the point estimate so obtained max-
imizes a likelihood or minimizes a sum of
squares. However, as Stokes’ example showed,
even with something so seemingly simple as a

probit model, these “convergence” messages
are not to be trusted blindly.

Indeed, this problem has even surfaced in the
New York Times (Andrew Revkin, 2002), which
reported that the link between soot in the air and
deaths had been markedly overstated by re-
searchers on a landmark air pollution study be-
cause “ Instead of adjusting the program to the
circumstances they were studying, they used
standard default settings for some calculations.”
Specifically, the researchers had used default
settings for Generalized Additive Model
(GAM) estimation, a nonlinear procedure, and
the researchers unwittingly obtained false con-
vergence. Science magazine reported that the
researchers used the procedure for five years
before they caught onto the problem (J. Kaiser,
2002). The errors led the Environmental Protec-
tion Agency to delay the scheduled implemen-
tation of new regulations. Of course, if the
errors had not been discovered, the wrong reg-
ulations would have been put into effect, and
nobody would ever have known the difference.
We note that the title of the Science article
suggested that a “software glitch” was to blame,
but this is incorrect. Nothing was wrong with
the software in question: the incorrect results
were solely attributable to user error.

A researcher should carefully examine any
solution offered by a package, to ensure that a
false maximum has not been reported.4 Many
solvers conflate the concepts of “stopping rule”
and “convergence criterion,” which can make it
difficult for the user to know whether optimality
conditions hold at a reported maximum. If the
convergence criterion is “ relative parameter
convergence,” the solver can stop and report
“convergence” even though the gradient is far
from zero. This can also happen when the func-
tion value is used as the convergence criterion.
Colin Rose and Murray Smith (2002, Sec. 12.3)
examined an ARCH model where the program
reports convergence based on the value of the
objective function, yet a very small change in
the LogL from 243.5337516 to 243.5337567
converts a nonzero gradient to a zero gradient.
To make the matter even more complicated, due
to the limitations of finite precision calculation,
a reported zero gradient does not imply an

4 McCullough and Renfro (2000) discussed the reasons
that a nonlinear solver can fail.
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extremum, or even a saddlepoint. McCullough
(2003) analyzed a “solution” for which each
component of the gradient was numerically
zero, but the point was subsequently shown to
be not a valid solution—it was just in a very flat
region of the surface.

Either intentionally or unintentionally, it is
fairly easy to trick a solver into falsely reporting
an extremum—whether a maximum for likeli-
hood estimation, or a minimum for least-
squares estimation. Therefore, the researcher’s
job is not done when the program reports con-
vergence—it is only beginning. Rather than
simply relying on a computer-generated conver-
gence message, we recommend the following
checks for verifying a reported solution, say, �̂,
to a nonlinear optimization problem:

1. Examine the gradient—is it zero?
2. Inspect the solution path (i.e., trace)—does

it exhibit the expected rate of convergence?
3. Evaluate the Hessian, including an eigensys-

tem analysis—is the Hessian negative defi-
nite? Is it well-conditioned?

Philip E. Gill et al. (1981, p. 313) noted that if
all these conditions hold then �̂ “ is likely to be
a solution of the problem regardless or not of
whether the algorithm terminated successfully”
[emphasis in the original]. These three points
only address the issue of whether a point esti-
mate is locally valid or spurious—whether in-
ference can be sustained also must be
considered. Therefore, to the above three steps
we add a fourth:

4. Profile the likelihood to assess the adequacy
of the quadratic approximation.

Thus, we advocate a departure from the usual
textbook approach to nonlinear estimation.

The reason for the fourth step is that standard
practice for nonlinear estimation is to test hy-
potheses, especially concerning coefficients, us-
ing a Wald-type statistic (with the concomitant
asymptotic normal approximation) that is based
on a quadratic approximation to the likelihood
function. Further, standard practice also pays
little attention to whether the quadratic approx-
imation is valid, in part because students are
frequently given the impression that the Wald
and likelihood approaches provide equally ac-
curate approximations [e.g., C. R. Rao (1973,

p. 418)]. Rarely are students informed that there
can be substantial differences between the two
approaches, e.g., the Walter W. Hauck-Allan
Donner (1997) phenomenon in the binary logit
model [see also W. N. Venables and B. D.
Ripley (1999, p. 225)]. For many years, this
overemphasis on the Wald statistic at the expense
of likelihood-based inference was justified on
the basis of the extreme computational burden
attached to the latter. In the present day, this
burden is ever-decreasing, and the advantages
of likelihood-based methods are becoming
more widely recognized (William Q. Meeker
and Luis A. Escobar, 1995, Sec. 3.1).

Below we implement the four steps, but first
a word of caution. These four steps cannot be
accommodated by many software packages.
Some packages will not permit the user to dis-
play the gradient at the solution, even though
the optimization routine makes use of the gra-
dient. There are packages that do not permit the
user to access the trace. (Why a software devel-
oper would not permit the user to access the
gradient or trace is beyond our understanding,
but it is fairly common.) There are packages
that do not have the ability to compute the
Hessian at the solution.5 Lastly, there are pack-
ages for which profiling an objective function
will be an unduly onerous programming exer-
cise, if it can be done at all.

II. Posing the SN Problem

We illustrate the four steps using a recently
published paper as a case study (Roni Shachar
and Barry Nalebuff, 1999; hereafter “SN” ). SN
presented a model of political participation in-
corporating the “pivotal-leader theory.” They
presented a number of empirical findings, most
of which do not concern us here. We focus only
on results from one table in their paper, Table
9, which provided estimates of an econometric
model based on their theoretical analysis. We
are drawn to consider the results of Table 9 be-
cause, simply from a numerical perspective, we
consider estimation of a 42 parameter highly
nonlinear model to be quite challenging—

5 Some packages offer an “approximate Hessian” based
on quasi-Newton estimation, and claim that it closely ap-
proximates the true Hessian when the number of iterations
exceeds the number of parameters. Such claims cannot be
relied upon safely. See McCullough (2003) for a counter-
example and further details.
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especially when it is done with numerical de-
rivatives.6 SN estimated the model by nonlinear
maximum likelihood, using the “maxlik” rou-
tine of the software package GAUSS, with the
algorithm, tolerance, convergence criterion, and

method of derivative calculation all left at their
default settings. Their data set contained 539
observations on 41 variables, spanning 50 states
and 11 elections. SN presented estimates of the
coefficients of this model in their Table 9 (re-
produced in column 2 of our Table 1).

The basis of their estimation is the following
likelihood, given by their equation (13):

(SN13)

L��� � �j � 1
50 �t � 1

11 f2 �DPjt�DVjt , xjt , �jt , Njt ,

Electoral Votesjt ; �� � f1 �DVjt��jt , ��

6 Generally speaking, analytic derivatives are superior to
numerical derivatives. There are two ways to produce ana-
lytic derivatives for nonlinear estimation: symbolic differ-
entiation and automatic differentiation. The latter is often
preferable because it can handle much more complicated
functions. See C. H. Bischof et al. (2002) for a discussion.
We note Aptech Systems has been developing on an auto-
matic differentiation system, and this capability should be
added to GAUSS in the not-too-distant future.

TABLE 1—COEFFICIENTS

Parameter SN Table 9 SN solution TSP solution

�� 0.1156 0.1156101700 0.1567
�d

0 �1.129 �1.1301832000 �1.337
�r

0 �0.8581 �0.8589113000 �0.8897
� 0.5855 0.5866155200 0.7906
� 0.1490 0.000014910489 0.0000105
S 0.0790 0.0787609210 0.0672
�Governor’s Race 0.4517 0.0451949580 0.0608
�Rain �0.0806 �0.0794654810 �0.1517
�Jim Crow �0.3510 �0.3511115100 �0.3521
�Income 0.2186 0.2189969300 0.2474
�Black �1.001 �1.0003932000 �1.185
�Moved In �0.0329 �0.0329552240 �0.0369
�Education 0.3613 0.3623056000 0.3454
External states (Hawaii, Alaska) �0.1770 �0.1771466800 �0.1829
1988 0.0468 0.0466542300 0.1713
1984 0.1207 0.1206201900 0.2416
1980 0.0326 0.0324726190 0.1521
1976 0.1465 0.1464833000 0.2667
1972 0.1653 0.1650568900 0.2887
1968 0.0172 0.0172931310 0.1087
1964 0.3289 0.3290525500 0.4661
1960 0.2646 0.2648168800 0.3475
1956 0.2049 0.2049925800 0.3042
1952 0.2679 0.2681945500 0.3627
�d 0.0378 0.0378479270 0.0376
b0 0.2932 0.2933971200 0.3406
Gallup poll 0.0052 0.0051469912 0.0050
GNP growth 0.0209 0.0209020940 0.0204
Incumbent 0.0132 0.0132008310 0.0133
VP candidate’s home state 0.0195 0.0194944560 0.0178
Presidential candidate’s state 0.0605 0.0604774540 0.0565
ADA and ACA scores 0.0004 0.0003582359 0.0004
Previous vote 0.0033 0.0033246381 0.0032
Previous (8 years) vote 0.0025 0.0025325467 0.0025
State legislature 0.0004 0.00036951962 0.0004
State economic growth 0.0063 0.0063127442 0.0061
South (1964) �0.1443 �0.1445717800 �0.1446
Southern Democrat 0.0776 0.0776463400 0.0757
South (1964) �0.0928 �0.0924887490 �0.0876
West (1976 and 1980) �0.0713 �0.0712441380 �0.0714
North Central (1972) 0.0569 0.568731200 0.0554
New England (1960 and 1964) 0.0679 0.0679576260 0.0631
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where, from their equation (11):

(SN11) f1 �DVjt�� jt ; b, �d
0, �r

0, �d �

� ��d*jt 	 d� ��jt �

�d
�� d*jt

DVjt
�exp��d

0 	 �r
0�

and from their equation (12):

(SN12)

f2 �DPjt�DVjt , xjt , � jt , Njt , Electoral Votesjt ,

�, �d
0, �, �� , b, �d , �, S� � ���*jt

��
� 1

DPjt
.

The vector � comprises the 42 parameters, and
�� denotes the pdf of the standard normal.7

Complete details are given in SN. SN asserted
(p. 541) that “Table 9 presents the parameters
that maximize the likelihood in equation (13).”
This is the claim that we investigate here, using
our suggested approach to analyzing nonlinear
estimation problems. The parameter estimates
in SN Table 9, reproduced in our Table 1, do not
report enough significant digits for a numerical
investigation of their problem. SN provided us
with a new vector containing results for each
parameter to eight significant digits. This vector
is given in the “SN solution” column of our
Table 1.8

The problem posed by SN is very demanding
and very hard to solve. We encountered severe
numerical pitfalls, only some of which we will
take note. A typical applied researcher cannot
be expected to suspect these pitfalls, let alone
verify their existence and know how to handle

them properly. For reasons not discussed in
their paper, SN did not actually implement
SN13, but a slightly different version thereof.
Therefore, the simple fact that our parameter
estimates are somewhat different from theirs
does not imply that their estimates are incorrect.
Our focus, though, is on SN13. Thus we inquire,
“What parameter values do maximize the like-
lihood given by SN13?”

III. Maximizing the SN Likelihood

As a first attempt to find the parameters that
maximize SN equation (13), we used GAUSS to
maximize the log-likelihood, with the SN solu-
tion as starting values.9 Let “prob” be the vector
of contributions to the likelihood. After a few
iterations, GAUSS produced a fatal error. Inves-
tigating, we found that “prob” for observation
513 has evaluated to zero rather than to a very
small number, and the log-of-zero does not
exist.

The specific numerical problem that we have
encountered has to do with the difference be-
tween “double precision” and “extended double
precision” [see Christoph W. Ueberhuber
(1997a, Vol. 1, Sec. 4.5–4.7) or Michael Over-
ton (2001, Secs. 4, 8) for a discussion]. On a PC
(personal computer), the former uses 64 bits,
and may be identified with RAM (random ac-
cess memory). The latter uses 80 bits, and may
be identified with the CPU (central processing
unit). Much of the mathematical calculation
takes place in the CPU with 80 bits, but when a
number has to be stored in memory, it is stored
with only 64 bits. What happened is that the
maximization algorithm encountered a point at
which “prob” for observation 513 evaluated to
0.464E-1838 (we thank Ron Schoenberg of
Aptech Systems for duplicating the error we
encountered and checking the registers to find
this value). This value is computed in a CPU7 (SN11) and (SN12) are incorrect as shown; the �� in

(SN11) and (SN12) should be scaled by (1/�d) or (1/��),
respectively. SN corrected for this in their code.

8 We note three discrepancies between the SN solution
and the results in SN Table 9. The sole numerical discrep-
ancy concerns �Rain, which the SN solution reports as
�0.0795 while SN Table 9 reports it as �0.0806. This
difference is trivial and can be ignored. SN Table 9 incor-
rectly reports two parameters due to scaling errors: � and
�Governor’s Race should have been reported as 0.0149 and
0.0452, respectively. In the code, � is returned as 0.0000149
thousands, but the text (p. 542) refers to millions, so in the
text � should be 0.0149. The discussion of � in the text,
though, is correct.

9 At this juncture we must briefly address another issue
ignored in the textbooks: proper scaling of parameters and
variables. Ideally, all variables (or means thereof) should be
of the same order of magnitude, and similarly for the pa-
rameters. However, both these goals rarely can be achieved.
Usually, only one or the other can be attained. If the solver
moves far from the starting values, it may be necessary to
rescale again, and restart where the last iterations left off.
Scaling is discussed in Gill et al. (1981, Sec. 7.5), G. A. F.
Seber and C. J. Wild (1989, Sec. 15.3.3), and J. E. Dennis
and Robert B. Schnabel (1996, Sec. 7.1).
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register with extended double precision, which
can handle numbers as small as 3.36E-4932,
and sometimes smaller. However, when the
value is stored in memory, it is stored in double
precision, which cannot handle values smaller
than 2.23E-308. Numbers smaller than this,
e.g., 0.464E-1838, are set to zero (this is called
underflow). Then, when the logarithm of this
stored value is taken, the log-of-zero problem
arises. The log-of-zero problem is not a soft-
ware fault. Whenever finite-precision arithmetic
is used, there will be some very small numbers
that cannot be represented by the computer. In
the present case, what we have is simply a
limitation of using double precision computa-
tion on a PC. It is entirely possible that the
problem would go away if we just switched
operating systems or implemented more nu-
merically efficient functions—we take exam-
ples of both these phenomena in footnote 12
in Section III, subsection A. Indeed, while
assisting us in our replication efforts, SN re-
ported that they did not encounter the log-of-
zero problem.

The algorithm had taken a step that put it into
a region of the parameter space where the like-
lihood for observation 513 is a very small num-
ber. Perhaps a different algorithm will take a
path that does not lead into the problematic
region of the parameter space. Starting values
could also be a possible cause—perhaps a dif-
ferent set of starting values will lead the solver
to step through a region of the parameter space
where this problem does not occur. It is even
conceivable that a different parameterization
could prove beneficial. We do not pursue these
possibilities. We take the view that in the
present case, were it not for numerical difficul-
ties, the algorithm would just be “passing
through” the problematic region of the param-
eter space. If the algorithm were to terminate
successfully at a point in this region, then the
model would be assigning near-zero likelihoods
to events that actually did occur. This would be
a good, informal diagnostic that something is
seriously wrong with the model.

We do not try to “solve” the log-of-zero
problem by altering the likelihood as is some-
times done in the applied literature. In particu-
lar, we would not take the contribution to the
likelihood of any observation that is less than
some small value, c � 1E-10, say, and reset it to
c. Vectorized code for this might be, say, “ z �

prob � c; prob � prob � (1 � z) � z � c.”
Trying to avoid the the log-of-zero problem in
this fashion might enable the solver to produce
a “solution” but such a solution would be unre-
liable for several reasons.

First, the redefinition of the likelihood func-
tion amounts to an arbitrary and atheoretical
respecification of the objective function. Sec-
ond, the redefinition introduces a kink into the
likelihood so the derivatives of the likelihood
are discontinuous, and a solver that does not
require continuous derivatives has to be used.
Third, if a solver that requires continuous de-
rivatives is mistakenly used, it will almost cer-
tainly stop at or near the kink and if it reports
convergence it will almost certainly be false
convergence. Fourth, even if a solver that does
not require continuous derivatives is used, es-
pecially if the problem is ill-conditioned, there
is no reason to think that the final solution of the
redefined likelihood is anywhere near what the
final solution to the original likelihood would be
if the log-of-zero problem could be avoided.
Fifth, the redefinition arbitrarily increases the
effect of aberrant observations, possibly by or-
ders of magnitude. All this applies only to solv-
ers with numerical derivatives. A solver with
analytic derivatives should balk because it will
figure out that the objective function is not
differentiable.

We next turned to our additional packages10

and tried again, once more using the SN solu-
tion as starting values.

Package V offers both numerical and analytic
derivatives. With the former, it reported fatal
numerical errors in the first iteration. With the
latter, it would not even complete a single iter-
ation, nor would it generate an error message.

Package W employs numerical derivatives.
After a few iterations it gave a “missing value at
observation 513” error message. We believe
this cryptic message was caused by the log-of-
zero problem.

Package X employs numerical derivatives.
Running from default, the program terminated
after several iterations with a “singular covari-
ance matrix” error. We could not get a solution
from this package, no matter what options we
invoked.

10 We do not name these packages because their identi-
ties are not germane to the discussion.
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Package Y offers both numerical and analytic
derivatives. With the former, after a few itera-
tions the program terminated with a “singular
covariance matrix” error. With analytic deriva-
tives it encountered a log-of-zero problem.

Package Z employs a quasi-Newton method
with numerical derivatives. After nearly 150
iterations, it converged to a point where the
LogL was 1967.071433529494; only the first 11
digits of which agree with a more reliable so-
lution that we shall later present as the “TSP
Solution.” Package Z does not allow the user to
access the derivatives. Therefore, we wrote a
short Mathematica (Stephen Wolfram, 1999)
program to calculate the analytic gradient of a
likelihood function and evaluate it at a solution
vector. To test this program, we reformulated
several of the NIST StRD nonlinear least-
squares problems as maximum likelihood prob-
lems and computed their gradients at the known
solutions. In every case, each component of the
gradient was less than 0.0001. Thus assured that
our Mathematica program worked, we gave it
the Package Z solution and found that only two
of the elements of the gradient were less than
0.0001 in magnitude, and the norm of the gra-
dient, � g� � �	g, g
, was 11.34. No matter
how we tweaked the program, we could not find
a point where the gradient was zero.11 Neither
could we get more than 11 digits of agreement
with the LogL of the TSP solution, but this is
hardly surprising given that Package Z used
numerical derivatives. This strongly suggests
that the use of analytic derivatives will be ab-
solutely necessary for solving the SN problem
though, as Packages V and Y show, the use of
analytic derivatives does not guarantee a solu-
tion. Overall, the performances of the packages
say more about the problem than conversely:
this is an exceptionally demanding problem.

A. Examine the Gradient and Trace

Finally, we turned to TSP v4.5 r06/07/01,
which employs automatic differentiation. We
note also that TSP has an LNORM( x) function,
which takes the log of the normal density in one
operation (GAUSS has similar functions). This
is numerically much more efficient and reliable

than the LOG(NORM( x)) that must be used in
many packages.12

By default, TSP has two convergence criteria
that both must be satisfied before the solver will
declare convergence: “ tol” is the usual param-
eter convergence, and “ tolg” is convergence of
the gradient in the metric of the inverse Hessian,
g�H�1g, which William Greene (2000, p. 200)
has noted is a very reliable criterion.13 The
defaults for both are 0.001. The default algo-
rithm is the BHHH (Ernst Bernt et al., 1974)
method. With default estimation, no conver-
gence was achieved after 500 iterations, at
which point LogL was 1966.99 and the norm of
the gradient was 6020.3. Even if convergence
had been reported, we would not have trusted
the answer: one important lesson from the soft-
ware reliability literature is that relying on de-
fault options for nonlinear solvers can lead to
false convergence (McCullough, 1999b). We
switched to the Newton method, which has su-
perior convergence properties, keeping all other
options at default. TSP then reported conver-
gence after five iterations with a LogL of
1967.071433588422, but the norm of the gradi-
ent was 66.9, indicating a decidedly nonzero gra-
dient.14 This underscores the importance of not
relying on computer-generated convergence mes-
sages. (Even if the gradient were zero, we would
not stop here, but insist on examining the trace.)

Next we decreased “ tol” to 1E-8 and obtained
a convergence message with � g� � 8.5E-9 and
LogL � 1967.071433588423 after seven itera-

11 If only one or two elements of the gradient were
nonzero, we would try rescaling.

12 We obtained the same answers regardless of whether
we used TSP for Linux or TSP for Windows, provided that
the Windows OS was either Windows 98 or Windows NT.
Running under Windows 95, TSP encountered the log-of-
zero problem on observation 513. However, when we re-
coded using LNORM( x) instead of LOG(NORM(x)) the
log-of-zero problem disappeared, and we obtained results
identical to the other software/OS combinations.

13 For the nonlinear least-squares case, the correspond-
ing criterion is given by Davidson and MacKinnon (1993, p.
205). For nonlinear least squares, an even better criterion
exists: the relative offset criterion (Douglas M. Bates and
Donald G. Watts, 1981).

14 A priori, we cannot assert that this is a nonzero gra-
dient. We can only make this judgment in retrospect, since
what constitutes zero depends on the scaling of the problem.
McCullough (2003) gave an example where � g� �
0.000574 for a nonlinear least-squares (NLS) problem, and
rescaled the variables so that � g� � 57.4. The now-rescaled
coefficients still minimize the sum-of-squared residuals, but
the gradient cannot be made any smaller.
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tions. Examining the gradient, each component
evaluated to less than 1E-8 (the TSP gradient
agreed with the results from our Mathematica
program to within rounding error). The succes-
sive LogL values of the iterations and their first
differences, 
k � LogLk � LogLk � 1, are given
in Table 2. This sequence clearly shows the
quadratic rate of convergence one would expect
from the Newton method as it approaches a
solution. Rates of convergence for other algo-
rithms can be found in Jorge Nocedal and Ste-
phen J. Wright (1999, Sec. 3.3); briefly, the secant
method is linearly convergent, the quasi-Newton
methods are superlinearly convergent, and the
Newton method is quadratically convergent.

The TSP solution is given in the last column
of our Table 1. This is the point that Package Z
was trying to find, but could not find because it
uses numerical derivatives. We note that the
TSP solution is, at best, a tentative local solu-
tion. Even if a local maximum can be found, the
parameter space is so high-dimensional that
searching to ensure a global maximum is a
daunting prospect, as this type of search suffers
the curse of dimensionality (Ueberhuber,
1997b, Vol. 2, Sec. 14.1.4).15 It may be noted
that the results from these two “solutions” are
not particularly close, either in a strict numeri-
cal sense or in an economic sense.

B. Evaluate the Hessian

Having considered whether the gradient is
zero and examined the convergence of the func-

tion value, we turn now to the Hessian that TSP
produced at the solution. Most economists are
familiar with the linear regression result
Cov(�̂) � s2(X�X)�1 and the serious conse-
quences of multicollinearity (unstable coeffi-
cients, inflated standard errors, unreliable
inference, etc.) when X�X is ill-conditioned. In
nonlinear regression problems, the covariance
matrix is estimated by the Hessian. Hence, it
should not be surprising that conditioning of the
Hessian and conditioning of X�X have much in
common (Greene, 2000, p. 420). Since the ef-
fects of an ill-conditioned Hessian are the ef-
fects of multicollinearity and then some, we
recommend a careful analysis of the Hessian.

We analyze the Hessian in TSP (but we
checked all the results against Mathematica,
just to be sure). The condition number of the
Hessian in the 2-norm is 6.5 � 109, and in the
-norm is 1.02 � 1010, both of which indicate
ill-conditioning. The implications of this ill-
conditioning are threefold. First, we must enter-
tain the possibility that the ill-conditioning has
led the solver astray—that the solver has not
taken steps toward the correct solution, and the
solver has nevertheless reported convergence.
Second, even if the solver moves toward and
gets close to the correct solution and declares
convergence, the reported solution may none-
theless be quite inaccurate. Third, even if the
solution is accurate, from a practical perspective
the Hessian may be rank deficient, implying a
lack of identifiability of some of the parameters.
We discuss these points in turn.

First, ill-conditioning can lead the solver to
report false convergence. For the Newton and
quasi-Newton methods, the step direction is de-
termined by solving a system of linear equations
based on a matrix G, which is either the Hessian
or an approximation to the Hessian. When G is
ill-conditioned, the solution to the system might
become unreliable due to numerical round-off
error, and the step direction will be incorrect.
Dennis and Schnabel (1996, p. 54) indicate that if
the condition number (the ratio of the largest to
smallest eigenvalues) of the matrix exceeds 1/�,
where � is machine precision, the solution is likely
to be completely unreliable. They also give a “rule
of thumb” suggesting that if the condition number
exceeds 1/��, then the solution should not be
accepted uncritically. On a PC, these 1/� and
1/�� bounds work out to about 4.5E15 and
6.7E7, respectively. When the Hessian is

15 Any nonlinear estimation should address the issue of
local versus global maxima. For gradient-based methods
this can be extremely tedious. Direct search methods, such
as Nelder-Mead, as well as various neural net algorithms,
can be advantageous in such a situation.

TABLE 2—QUADRATIC CONVERGENCE

OF THE TSP SOLUTION

Iteration � k LogLk 
k

0 1861.465287522757 —
1 1948.733993663775 87.2687
2 1965.596248511476 16.8625
3 1967.053229454100 1.4569
4 1967.071429856765 0.0182
5 1967.071433588422 3.73E-6
6 1967.071433588423 1.82E-12
7 1967.071433588423 0
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ill-conditioned and the estimate is in a “fl at” re-
gion of the parameter space, it will be easy for the
solver to declare a solution erroneously based on
function convergence or parameter convergence,
and even on gradient convergence. Therefore, it is
especially advisable to check the solution offered
by a solver when the Hessian is ill-conditioned.
Sometimes the problem can be rescaled to de-
crease the severity of the ill-conditioning; see Ron
Schoenberg (2001) for a discussion.

Second, even if the step direction is correctly
computed, and the solver is correct in declaring
convergence, there still may be reason to mis-
trust the solution. Let �* be the solution that
could be computed with infinite precision, and
let �̂ be the solution computed with available
precision (in this case, double precision with a
32-bit word yields 64 bits, about 16 digits). If
the Hessian were well-conditioned, we could be
sure that ��* � �̂� was “small.” In the presence
of ill-conditioning, we have no such assurance—
i.e., it is possible that �̂ is far from �*, espe-
cially in directions associated with the smallest
eigenvalues of the Hessian. This corresponds,
roughly, to the (local) maximum of the likeli-
hood occurring in a flat region of the surface,
where even small changes in LogL can make a
large difference in the solution. This has a direct
analogy in the multicollinearity literature, in that
the parameters in the directions of eigenvectors
associated with the smallest eigenvalues are likely
to be imprecisely estimated.16 In fact, this is an
extension of multicollinearity analysis via eigen-
systems, as discussed in Vinod and Aman Ullah
(1981, Sec. 5.3). Eigenvalues of the Hessian are
measures of the curvature of the parameter space
in directions defined by the corresponding eigen-
vectors. Very small eigenvalues, therefore, indi-
cate very slight curvature, i.e., long ridges in the
parameter space, which in turn indicate that in the
direction of the ridge, parameters are likely to be
poorly estimated. Given the eigensystem analysis
presented in our Table 3, many of the coefficients
are likely to be imprecisely estimated. We do not
pursue this point, though we recognize that it may
be important.

Third, ill-conditioning can induce rank defi-
ciency in the Hessian. In the present case, all the
normalized eigenvalues are negative (the largest
in magnitude nonnormalized eigenvalue is
�2.11562E11), and even the smallest in mag-
nitude normalized eigenvalue is far from float-
ing point zero (which is about 1E-16 on a PC),
so it might seem that the Hessian is negative
definite, but that would be a premature conclu-
sion. Seber and Wild (1989, p. 602) raised the
issue: “Because of roundoff errors in computa-
tion, it is virtually impossible to know whether
or not a badly conditioned matrix with one or
more very small eigenvalues is positive defi-
nite.” In principle, eigenvalue calculation for
symmetric matrices can be exceedingly accu-
rate (Gene H. Golub and Charles F. van Loan,
1996, Sec. 8.7.2). However, this assumes that
all digits in the symmetric matrix are accurate.
When accuracy is less than perfect, Biswa N.
Datta (1995, p. 560) recommended that one
should “ [a]ccept a computed singular value to
be zero if it is less than 10�t � �A�, where the
entries of A are correct to t digits.” But what is
t in the present case?

In general, in solving a linear system Ax � b,
one significant digit of accuracy in the solution,
x, is lost for every power of ten in the condition
number (Kenneth Judd, 1998, p. 68). A PC
using double precision has about 16 decimal
digits with which to store results. The condition
of the Hessian, using the infinity norm, is on the
order of 1010, so we can expect that the coeffi-
cients are accurate to perhaps six digits. There-
fore, we are quite comfortable assuming that, in
the present case, the elements of the Hessian are
accurate to no more than eight digits, i.e., eight
is an upper bound for t. Thus, 10�t � �A� �
10�8 � 1.02 � 1010 � 102 and normalized
eigenvalues smaller in size than 102/
2.11562E11 � 4.82E-10 should be considered
as zero. Examining the second column of our
Table 3, it appears that the three smallest-in-size
normalized eigenvalues are numerically indis-
tinguishable from zero—the Hessian appears to
have a rank of 39, so that it is negative semidefi-
nite rather than negative definite, i.e., the Hes-
sian is rank-deficient.

Given the one-to-one relationship between
local identifiability and nonsingularity of the
Hessian, our results indicate that the SN model
is poorly identified. Davidson and MacKinnon
(1993, p. 181) remarked on two problems that

16 Care should be taken in computing the eigensystem.
Though many packages offer matrix operators, usually these
are of unproven quality. We are aware of no package that
provides benchmark results for these operators. In our own
informal investigations, we have found gross errors in the
matrix inversion and eigen routines of some packages.
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can occur with poorly identified models: some
programs, but not others, may be able to esti-
mate the model; and if the model can be esti-
mated, the parameter estimates may be too
imprecise to be useful. We have already en-
countered both these phenomena.

C. Profile the Likelihood

We turn now to the adequacy of the quadratic
approximation near the maximum likelihood

solution.17 To make this assessment, we employ
the usual “profile likelihood” approach (Box

17 The “adequacy of the quadratic approximation”
largely concerns itself with the shape of the likelihood
surface at the maximum: can inference based on the normal
distribution be justified? However, this concept is intimately
related to the condition of the Hessian. It is trivial to show
that if the Hessian is ill-conditioned, then the quadratic
approximation fails to hold in at least one direction. To see
this, let the quadratic approximation at �0 be: f(� ) �

TABLE 3—NORMALIZED EIGENVALUES OF HESSIAN, EXTREMAL ELEMENT OF UNIT

EIGENVECTOR AND ITS VALUE, AND PARAMETER ASSOCIATED WITH EXTREMAL ELEMENT

Eigenvalue
Unit eigenvector
extremal element

Value of
extremal element

Parameter corresponding to
extremal element

�1. 23 �0.999 �
�4.84E-3 2 0.934 Gallup Poll
�2.32E-3 7 0.931 Presidential candidate’s state
�1.03E-3 10 �0.893 State legislature
�1.34E-4 9 0.757 Previous (8 years) vote
�3.87E-5 8 0.794 Previous vote
�3.70E-6 22 �0.999 �d

�3.31E-6 3 0.946 GNP growth
�1.72E-6 11 �0.999 State economic growth
�7.59E-7 4 �0.931 Incumbent
�5.62E-7 40 0.950 �Moved in

�2.05E-7 42 0.999 ��

�1.18E-7 36 0.519 �Income

�7.23E-8 5 �0.793 VP candidate’s home state
�6.49E-8 13 �0.629 Southern Democrat
�5.13E-8 6 0.829 Presidential candidate’s home state
�4.71E-8 15 0.613 West (1976 and 1980)
�4.53E-8 1 0.598 b0

�3.55E-8 17 �0.804 New England (1960 and 1964)
�2.81E-8 16 �0.603 North Central (1972)
�2.58E-8 16 �0.723 North Central (1972)
�2.17E-8 14 0.541 South (1964)
�1.64E-8 34 0.735 �Governor’s Race

�1.12E-8 38 �0.695 �Jim Crow

�1.00E-8 28 �0.762 1972
�9.84E-9 30 0.585 1968
�9.57E-9 24 �0.711 1988
�9.45E-9 26 0.629 1980
�9.33E-9 27 �0.644 1976
�9.20E-9 32 �0.729 1956
�7.95E-9 38 0.556 �Jim Crow

�6.62E-9 29 0.477 1968
�5.28E-9 12 0.827 South (1964)
�4.14E-9 35 �0.546 �Rain

�3.28E-9 35 0.743 �Rain

�2.16E-9 41 0.610 External states (Hawaii, Alaska)
�1.74E-9 41 �0.518 External states (Hawaii, Alaska)
�1.36E-9 19 �0.558 �d

0

�5.53E-10 39 �0.809 �Black

�4.59E-10 21 0.668 �
�2.60E-10 37 0.478 �Education

�1.54E-10 21 �0.419 �
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and George C. Tiao, 1973; Bates and Watts,
1988; Christian Ritter and Bates, 1996). Marc
Nerlove (1999) provides an elementary exposi-
tion aimed at economists. This concept is well-
known in the statistics literature, and many
statistical packages such as S-PLUS and SAS
offer profile methods. GAUSS also offers profile
methods. Let �̂ be the ML estimate of the pa-
rameter � with estimated standard error s,
which corresponds to a value LogL̂. Fix � � �0
and reestimate the model with one less free
parameter, obtaining a value LogL0. Allowing
�0 to vary about �̂ and plotting these values of
�0 against the associated values of LogL0 con-
stitutes the likelihood profile for the parameter
�. Here we follow Bates and Watts (1988, Sec.
6), and allow �0 to vary from �̂ � 4s to �̂ � 4s,
which largely agrees with Venables and Ripley
(1999, Sec. 8.5).

Visually, it is easier to discern deviations
from linearity than deviations from quadratic
behavior. If the profiled objective function is
converted to the “signed square root” scale and
if the quadratic approximation holds, then under
the usual conditions

(1) �0 � sign��0 	 �̂��2�LogL̂ 	 LogL0 �

is asymptotically N(0, 1) and �0 is locally linear
in �0. Further, let � be studentized, (�) � (�̂ �
�0)/se(�̂), so that (�) also is asymptotically
normal. If the quadratic approximation is valid,
then a plot of �0 against (�0) not only will be
locally linear, but will fall on a line through the
origin with unit slope. This is just the ML
analog of what Bates and Watts (1988, p. 205)
called the “profile-t plot” for nonlinear least-
squares problems, in which the studentized pa-
rameter is plotted against �0 � sign(�0 �
�̂)�(S(�0) � S(�̂))/s2 where S(� ) is the sum-
of-squares evaluated at � and s2 is an estimate
of the error variance.

If the quadratic approximation is valid, then
normal approximation inference based on a cen-

tral limit theorem is appropriate. However,
when the profile reveals the quadratic approxi-
mation to be poor, there will be a marked dis-
crepancy between the confidence intervals
based on asymptotic normality and those based
on the contours of the likelihood function. In
such a case, the Wald intervals are prima facie
suspect, because the Wald interval works by
assuming a quadratic approximation to the like-
lihood surface, while the likelihood ratio
method works directly with the likelihood sur-
face. A. Ronald Gallant’s (1987, p. 147) advice
on the matter is to “simply use the likelihood
ratio statistic in preference to the Wald statis-
tic.” McCullough (2003) examined a nonlinear
least-squares model for which the profiles are
not straight lines, and in a Monte Carlo analysis
found that the likelihood intervals provided bet-
ter coverage than the Wald intervals.

For present purposes, profiling all 42 param-
eters is both extremely burdensome and unnec-
essary. The eigensystem analysis of the
Hessian, presented in Table 3, indicates that the
unit eigenvector associated with the largest nor-
malized eigenvalue has an extremal component
�0.999986 in the direction of the parameter �.
Therefore, we compute the likelihood profile of
�, which has a value of 1.05071E-5 and a stan-
dard error of 6.265E-6. We use TSP to profile
the likelihood. All profile estimations were pro-
duced by 100 iterations of BHHH followed by
Newton iterations until convergence. The LogL
on the signed square root scale is plotted against
the studentized parameter in Figure 1(a), along
with a dotted line with unit slope through the
origin. The profile has a slight kink at the origin,
with a slope of about unity to the right and a
slope greater than unity to the left; this reveals
a lack of symmetry in the likelihood. Farther
from the origin, even a lack of linearity is evi-
dent, and the lack of monotonicity suggests the
existence of multiple local optima. These con-
clusions are confirmed by examining the profile
of LogL0 against �0 in Figure 1(b).

At the other extreme, corresponding to the
40th and 42nd smallest eigenvalues are two
eigenvectors with extremal elements of 0.668
and �0.419, respectively, both in the direction
of �, which has a value of 0.790645 and a
standard error 0.154528. Examining Figure
2(a) at the origin, the profile is linear to the right
but curved to the left. Further from the origin, a
lack of linearity is pronounced, and it can be

f(�0) � g(�0)�� � 0.5��H(�0)� � f(�0) � 0.5��H(�0)�
at the maximum, since the gradient there is zero. Decom-
pose the Hessian into its eigenvalues and eigenvectors,
f(� ) � f(�0) � 0.5��(P�P�)�. If the Hessian is nearly
singular then the quadratic approximation nearly fails in
some directions P�� generally corresponding to the smallest
eigenvalues of H.
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seen that �0 ranges from �2 to �4, instead of a
symmetric �4 to �4; this indicates skewness of
the likelihood. These conclusions are confirmed
by Figure 2(b), which presents the profile of
LogL0 against �0 , the left side of which tends
toward an asymptote. Thus, for both parameters
the quadratic approximation is not valid. This
implied asymmetry of the sampling distribution
of the parameters suggests that likelihood-based
intervals will be preferable to those based on
asymptotic normality. Meeker and Escobar
(1998) give several examples of likelihood-
based intervals. Additionally, bootstrap meth-
ods may also be useful in the presence of such
asymmetry, as discussed in Vinod (2000b).

We have little doubt that profiling other pa-
rameters would produce similar results. We
conclude that the quadratic approximation can-
not sustain confidence intervals based on nor-
mality. In part due to the inadequacy of the
quadratic approximation, we do not present
standard errors of the coefficients. Were we to
produce confidence intervals for the parameters,
we might use likelihood ratio intervals or the
bootstrap. Regardless, we certainly would not

rely on the usual method. The other reason why
we do not present standard errors is that we are
skeptical of the validity of the parameter esti-
mates themselves, as we show next.

D. Additional Considerations

While the gradient appears to be zero and the
trace exhibits quadratic convergence, the Hes-
sian is extremely ill-conditioned and negative
semidefinite, and the likelihood profile suggests
that the quadratic approximation is invalid.
Taken together, these results leave us far from
convinced that the TSP solution is valid, and
there remains one more consideration on this
point.

We have argued elsewhere (McCullough and
Vinod, 1999, p. 645) that “A user should always
have some idea of the software’s precision and
range, and whether his combination of algo-
rithm and data will exhaust these limits.” The
analysis thus far allows us to conclude that the
SN problem does exhaust the limits of a PC.
Specifically, given a 64-bit computing environ-
ment, i.e., PC computing, the 42-parameter

FIGURE 1. LIKELIHOOD PROFILES OF �
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problem posed by SN equation (13) satisfies
Wright’s (1993) definition of a “ large” optimi-
zation problem: “ [A] ‘ large’ problem is one in
which the number of variables (or constraints)
noticeably affects our ability to solve the prob-
lem in the given computing environment.”

Notice the difference between the LogL val-
ues associated with the two solutions for which
TSP declared convergence: 1967.071433588422
(�g� � 66.9) and 1967.071433588423 (�g� �
8.5E-9). They differ only in the twelfth deci-
mal, i.e., the sixteenth significant digit, yet the
gradient of one is decidedly nonzero, while the
gradient of the other is zero.18

Considering the extreme ill-conditioning of

the Hessian, the prospective solution is located
in a very flat region of the parameter space, so
flat that the difference between the zero and
nonzero gradient occurs in the sixteenth digit of
the value of the likelihood. This sixteenth digit,
almost assuredly, is corrupted by rounding er-
ror, so we really do not know what the value of
LogL is at the maximum (assuming this point is
a maximum). Thus, it can be seen that the
problem posed by SN has completely exhausted
the limits of PC computing, and more powerful
computational methods will be needed to ana-
lyze this problem properly. We further observe
that the use of analytic derivatives does not
guarantee a solution, but they have enabled us
to see that we do not have a solution: the SN
problem, as posed, cannot be reliably solved on
a PC.

So far we have not presented standard errors
for our coefficients for two reasons. First, if we
do not trust the coefficients, we cannot possibly
trust the standard errors. Second, even if we did
trust the coefficients, we are not sure that the
finite-sample properties of the likelihood will
support asymptotic normal inference. In order

18 Note that both analytic first and second derivatives
were employed. It is no wonder that approaches based on
numerical derivatives met with little success. This does not
constitute a call for the wholesale abandonment of numer-
ical derivatives. Experience with the NIST StRD nonlinear
least-squares problems suggests that for run-of-the-mill
problems, and even some fairly hard ones, the difference
between well-programmed numerical derivatives and ana-
lytical derivatives, especially when summed, is small
enough that the former can give quite satisfactory solutions.

FIGURE 2. LIKELIHOOD PROFILES OF �
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to make a further point about standard errors in
the context of nonlinear estimation, let us as-
sume that the TSP solution is valid and that the
quadratic approximation holds, and inquire into
the significance of some important coefficients;
for example, those discussed at length on pp.
541–542 of SN. SN, by using the GAUSS max-
lik procedure at default, obtained BHHH stan-
dard errors; we convert their coefficients and
standard errors to t-stats. For purposes of com-
parison, we present TSP BHHH t-stats from our
TSP solution. Results are in Table 4.

Notice how � has gone from significant to
insignificant. SN write (1999, p. 542), “The
parameter � is 0.15 and significant at the 1-
percent level. This implies that an increase of
one million people (holding electoral votes and
everything else constant) would lead to less
effort which, in turn, would result in a 1-percent
decrease in participation.” By contrast, the
value of � has increased dramatically, from
0.587 to 0.791, which would imply that the
effect of the leader’s effort is even more
pronounced.

We note also that, had we used analytic Hes-
sian standard errors, the t-stats for �, �, and S
would have been 6.6, 2.8, and 2.3, respectively.
This raises the age-old question of which stan-
dard error to use. See, e.g., Davidson and
MacKinnon (1993, Secs. 8.6 and 13.5) or
Greene (2000, Sec. 4.5.2). We merely wish to
suggest that the researcher should not accept
uncritically the default standard errors offered
by the software.

IV. On the Process of Replication

As part of our continuing investigation into
the reliability of econometric software (McCul-
lough and Vinod, 1999; McCullough, 2000b;
Vinod, 2001), our original goal was to replicate
each article in an issue of this journal using the
author’s software package. Porting the code to
other software packages might have enabled us

to determine the extent to which econometric
results are software-dependent. Regrettably, we
had to abandon the project because we found
that the lesson of William G. Dewald et al.
(1986) has not been well-learned: the results of
much research cannot be replicated. Many au-
thors do not even honor this journal’s replica-
tion policy, let alone ensure that their work is
replicable. Gary King (1995, p. 445) posed the
relevant questions: “ [I]f the empirical basis for
an article or book cannot be reproduced, of what
use to the discipline are its conclusions? What
purpose does an article like this serve?”

We selected the June 1999 issue of this jour-
nal, and found ten articles that presented results
from econometric/statistical software packages.
Two of these were theory articles that did some
computation—we deleted them from our sam-
ple to focus on empirical work. We began trying
to collect data and code from authors as soon as
the issue was out in print. Three authors sup-
plied organized data sets and code. These three
papers were primarily centered on linear regres-
sion. From a computational perspective, they
are not fertile ground when one is searching for
numerical difficulties; we did not bother to at-
tempt replicating these papers.19

Though the policy of the AER requires that
“Details of computations sufficient to permit
replication must be provided,” we found that
fully half of the authors would not honor the
replication policy. Perhaps this should not be
surprising—Susan Feigenbaum and David Levy
(1993) have clearly elucidated the disincentives
for researchers to participate in the replication
of their work, and our experience buttresses
their contentions. Two authors provided neither
data nor code: in one case the author said he had
already lost all the files; in another case, the
author initially said it would be “next semester”
before he would have time to honor our request,
after which he ceased replying to our phone
calls, e-mails, and letters. A third author, after
several months and numerous requests, finally
supplied us with six diskettes containing over
400 files—and no README file. Reminiscent

19 Even linear procedures must be viewed with caution.
Giuseppe Bruno and Riccardo De Bonis (2003) gave the
same panel data problem to three packages and got three
different answers for the random-effects estimator. How-
ever, they traced all the discrepancies to legitimate algorith-
mic differences in the programs.

TABLE 4—COMPARISON OF t-STATISTICS

FOR SELECTED COEFFICIENTS

Coefficient SN (BHHH) TSP (BHHH) TSP (Hessian)

� 4.1 5.1 6.6
� 2.6 1.7 2.8
S 1.6 1.8 2.3
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of the attorney who responds to a subpoena with
truckloads of documents, we count this author
as completely noncompliant. A fourth author
provided us with numerous datafiles that would
not run with his code. We exchanged several
e-mails with the author as we attempted to as-
certain how to use the data with the code. Ini-
tially, the author replied promptly, but soon the
amount of time between our question and his
response grew. Finally, the author informed us
that we were taking up too much of his
time—we had not even managed to organize a
useable data set, let alone run his data with his
code, let alone determine whether his data and
code would replicate his published results.

The final paper was by SN, who obviously
honored the replication policy. This paper con-
tained an extremely large nonlinear maximum-
likelihood problem that greatly intrigued us, so
we decided to examine it in detail. Thus, it
became our case study. Professor Shachar co-
operatively and promptly exchanged numerous
e-mails with us as we sought to produce a
useable data set and understand his code. Pro-
fessor Nalebuff, too, was most helpful. They
continued to assist us even after we declared
that their nonlinear problem was too large for a
PC.20

Replication is the cornerstone of science. Re-
search that cannot be replicated is not science,
and cannot be trusted either as part of the pro-
fession’s accumulated body of knowledge or as
a basis for policy. Authors may think they have
written perfect code for their bug-free software
package and correctly transcribed each data
point, but readers cannot safely assume that
these error-prone activities have been executed
flawlessly until the authors’ efforts have been
independently verified. A researcher who does
not openly allow independent verification of his
results puts those results in the same class as the
results of a researcher who does share his data
and code but whose results cannot be replicated:
the class of results that cannot be verified, i.e.,
the class of results that cannot be trusted. A
researcher can claim that his results are correct

and replicable, but before these claims can be
accepted they must be substantiated. This jour-
nal recognized as much when, in response to
Dewald et al. (1986), it adopted the aforemen-
tioned replication policy. If journal editors want
researchers and policy makers to believe that
the articles they publish are credible, then those
articles should be subject, at least in principle,
to the type of verification that a replication
policy affords. Therefore, having a replication
policy makes sense, because a journal’s primary
responsibility is to publish credible research,
and the simple fact is that “ research” that cannot
be replicated lacks credibility.

Many economics journals have similar repli-
cation policies: The Economic Record, Journal
of International Economics (JIE), Journal of
Human Resources, International Journal of In-
dustrial Organization (IJIO), and Empirical
Economics are but a few. Our own informal
investigation suggests that the policy is not
more effective at these journals than at the
American Economic Review. We chose recent
issues of JIE and IJIO, and made modest at-
tempts to solicit the data and code: given the
existence of the World Wide Web, we do not
believe that obtaining the data and code should
require much more effort than a few mouse
clicks. We sent either e-mails or, if an e-mail
address could not be obtained, a letter, to the
first author of each empirical article, requesting
data and code; for IJIO there were three such
articles, and for JIE there were four. Only two
of the seven authors sent us both data and code.

There may be some problems with the imple-
mentation of replication policies at the above
journals, but the problems certainly are remedi-
able. What is difficult to believe is that 17 years
after Dewald et al. (1986), most economics
journals have no such policy, e.g., Journal of
Political Economy, Review of Economics and
Statistics, Journal of Financial Economics,
Econometrica, Quarterly Journal of Econom-
ics, and others. One cannot help but wonder
why these journals do not have replication pol-
icies. Even in the qualitative discipline of his-
tory, authors are expected to make available
their data, as evidenced by the recent Bellesiles
affair (James Lindgren, 2002).

Our experience with the June 1999 issue of
the AER is the first test of the AER policy of
which we are aware, and the policy does not
fare well. Obtaining data and code from authors

20 For the record, the SN paper contains 11 tables of
results. We did not attempt to replicate Tables 1, 2, and 8
(which are Monte Carlo results), 10 (which contains the
results of algebraic calculations), and 11. Excepting typo-
graphical errors, we had no difficulty replicating Tables 3, 4,
5, 6, and 7.
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after their paper is in print can be a formidable
task. Even for the authors who sent data/code
files, of which there were six, we had to wait
anywhere from days to months for the author to
supply the data and code. This, of course, was
after we made successful contact with the au-
thor, a process that itself took anywhere from
days to weeks. Sometimes the data were in a file
format that could only be read by the author’s
software, rather than in ASCII. Some of the
code we received exhibited exceedingly poor
programming style: unindented, uncommented,
and generally undecipherable by anyone not
intimately familiar with the package in question—
here we recommend an excellent article by
Jonathan Nagler (1995) on how to write good
code for archival purposes. The code should be
written and commented so as to guide a user
who has a different software package. Ensuring
that one’s work is replicable is no easy task, as
Micah Altman and Michael P. McDonald
(2003) demonstrated.

As solutions to these problems, as part of a
symposium on the topic of replication, King
(1995) discussed both the replication standard,
which requires that a third party could replicate
the results without any additional information
from the author, and the replication data set,
which includes all information necessary to ef-
fect such a replication.21 Naturally, this includes
the specific version of the software, as well as
the specific version of the operating system.
This should also include a copy of the output
produced by the author’s combination of data/
code/software version/operating system. In the
field of political science, many journals have
required a replication data set as a condition of
publication.22 Some economics journals have
archives; often they are not mandatory or, as in
the case of the Journal of Applied Economet-
rics, only data is mandatory, while code is
optional. A “data-only” requirement is insuffi-

cient, though, as Jeff Racine (2001) discovered
when conducting a replication study.

As shown by Dewald et al. (1986), research-
ers cannot be trusted to produce replicable re-
search. We have shown that the replication
policies designed to correct this problem do not
work. The only prospect for ensuring that au-
thors produce credible, replicable research is a
mandatory data/code archive, and we can only
hope that more journals recognize this fact. To
the best of our knowledge the only economics
journals that have such a policy are the Federal
Reserve Bank of St. Louis Review, the Journal
of Money, Credit, and Banking, and Macroeco-
nomic Dynamics. The cost of maintaining such
an archive is low: it is a simple matter to upload
code and (copyright permitting) data to a web
site.23 The benefits of an archive are great. First,
there would be more replication (Richard G.
Anderson and Dewald, 1994). Second, as we
recently argued (McCullough and Vinod, 1999,
p. 661), more replication would lead to better
software, since more bugs would be uncovered.
Researchers wishing to avoid software-dependent
results will take Stokes’ (2003) advice and use
more than one package to solve their problems;
this will also lead to more bugs being uncov-
ered. Finally, the quality of research would im-
prove: knowing that eager assistant professors
and hungry graduate students will scour their
data and code looking for errors, prospective
authors would spend more time ensuring the
accuracy, reliability, and replicability of their
reported results.

V. Conclusions

The textbook paradigm ignores computa-
tional reality by accepting uncritically the out-
put from a computer program’s nonlinear
estimation procedure. Researchers generally
follow this paradigm when publishing in eco-
nomics journals, even though it is well known
that nonlinear solvers can produce incorrect an-
swers. We advocate a four-step process
whereby a proposed solution can be verified.
We illustrate our method by making a case

21 Some journals permit authors to “embargo” their data
for a period of time, so that the author will have exclusive
use of the data for that period. Of course, the empirical
results of articles based on embargoed data cannot be
trusted or used as the basis of policy-making, for those
results cannot be replicated at least until the embargo ends.

22 American Journal of Political Science, Political Anal-
ysis, British Journal of Political Science, and Policy Studies
Journal are but four.

23 In the case of proprietary data, the researcher should
provide some information on the data that does not violate
the copyright, e.g., the mean of each series, so that another
researcher who obtains the data from the proprietary source
can be sure he is using the exact same data.
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study of one nonlinear estimation from a re-
cently published article by Shachar and Nale-
buff (1999). The four-step process not only can
be used to verify a possible solution, it can also
assist in determining whether a problem is too
large for the computer at hand. Indeed, this
proved to be the case with the Shachar/Nalebuff
nonlinear maximum likelihood problem.

Finally, we have vindicated our previous as-
sertion concerning replication policies, that such
“policies are honored more often in the breach”
(McCullough and Vinod, 1999, p. 661). Mere
“policies” do not work, and only mandatory data/
code archives can hope to achieve the goal of
replicable research in the economic science.

Computational Details: For TSP v4.5 r 06/07/01
(as well as “R” v1.5.0, in which graphics were
rendered) and Mathematics v4.1 the operating
system was Linux v2.2.18 (Red Hat v7.1) on a
733 MHz Pentium III. GAUSS v3.5 was run on
733 MHz Pentium III under Windows Mille-
nium Edition.
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