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Abstract
This study focuses on future very hot summers associated with severe heatwaves and record-
breaking temperatures in France. Daily temperature observations and a pair of historical and
scenario (greenhouse gas radiative concentration pathway 8.5) simulations with the high-
resolution (∼12.5 km) ALADIN regional climate model provide a robust framework to examine
the spatial distribution of these extreme events and their 21st century evolution.

Five regions are identified with an extreme event spatial clustering algorithm applied to
observed temperatures. They are used to diagnose the 21st century heatwave spatial patterns. In
the 2070s, we find a simulated mega-heatwave as severe as the 2003 observed heatwave relative to
its contemporaneous climate. A 20-member initial condition ensemble is used to assess the
sensitivity of this future heatwave to the internal variability in the regional climate model and to
pre-existing land surface conditions. Even in a much warmer and drier climate in France, late
spring dry land conditions may lead to a significant amplification of summer extreme
temperatures and heatwave intensity through limitations in evapotranspiration. By 2100, the
increase in summer temperature maxima exhibits a range from 6 °C to almost 13 °C in the five
regions in France, relative to historical maxima. These projections are comparable with the
estimates given by a large number of global climate models.
1. Introduction

Recent decades have seen the repeatedoccurrence of hot
summers in France characterized by intense heatwaves
and daily record temperatures. In France and Western
Europe, the2003 summer is thewarmest on record,with
seasonal mean temperature anomalies of about +3.2 °C
on average over France (compared to the 1981–2010
climatology; communication from Météo-France).
These warm temperatures were mainly associated with
two heatwaves, in June and August, the latter leading to
© 2017 IOP Publishing Ltd
record values of daily minimum and maximum
temperature in many regions in France (Beniston
2004, Schär et al 2004, Fink et al 2004). The August
heatwave of 2003 is themost intense heatwave observed
during the instrumental period over France andCentral
Europe and has therefore been called a mega-heatwave
because of its exceptional characteristics (Miralles et al
2014, Fischer 2014). The 2015 summer was the second
warmest on record in France since 1901 (+1.5 °C;
relative to 1981–2010), with three heatwaves occurring
during this summer and leading to daily temperature
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extremes and new record-breaking temperatures in the
core of the warm spells.

Over Western Europe, the occurrence of a
heatwave is dependent on the establishment and
duration of specific synoptic conditions such as the
very intense atmospheric blocking in August 2003
(Fink et al 2004, Ogi et al 2005, Trigo et al 2005,
Miralles et al 2014). The occurrence and persistence of
this atmospheric circulation pattern are influenced by
the large scale circulation and remote teleconnections
(Black et al 2004, Cassou et al 2005, Ogi et al 2005,
Black and Sutton 2006, Carril et al 2007). However,
many studies (e.g. Black et al 2004, Fischer et al 2007,
Garcia-Herrera et al 2010, Stéfanon et al 2012, Miralles
et al 2014) have also shown that the 2003 summer
extreme temperatures could not have been reached
without pre-existing large negative soil moisture
anomalies. Other interactions between the regional
climate components can also influence heatwave
temperatures, such as dust aerosols during the 2006
observed event (Nabat et al 2015).

Climate models suggest that human influence is
expected to significantly increase the frequency,
duration and intensity of heatwaves in Europe (Meehl
and Tebaldi 2004, Stott et al 2004, Fischer and Schär
2010, Christensen et al 2013, Christidis et al 2015,
Russo et al 2014, Lau and Nath 2014, Lemonsu et al
2014, Schoetter et al 2015, Ouzeau et al 2016). Over
Europe, in addition to surface warming, these models
also suggest a decrease in soil moisture, which can
partly be explained by an increase in evapotranspira-
tion in spring and a decrease in precipitation in
summer (Collins et al 2013). Note that these
projections are commonly assessed based on a recent
reference period, often selected as the last decades of
the 20th century. Very few studies have looked at the
occurrence andmechanisms of futuremega-heatwaves
in the context of their contemporaneous climate.

Our main objective is to investigate the possible
occurrence of a mega-heatwave in a much warmer
mean climate as well as the relevant physical
mechanisms. We focus on heatwaves as extreme as
the 2003 event with respect to their contemporaneous
mean climate. First, a new observed daily temperature
dataset for France is used to provide homogeneous
regions (or clusters) of spatially co-varying summer
extreme temperature events based on a statistical
clustering technique. Then, an historical and 21st
century climate simulation performed with the
ALADIN regional climate model (at ∼12 km spatial
resolution) is used to identify the occurrence of future
record-breaking temperatures and related mega-
heatwaves. We find a simulated mega-heatwave in
the second part of the century (in summer 2075) that
is as extreme as that of 2003 in terms of anomalous
extreme temperatures. A 20-member initial condition
ensemble initialized one month before the heatwave
onset is used to examine a possible influence of land-
atmosphere interactions on surface extreme tempera-
2

ture amplification. We focus on the influence of pre-
existing soil moisture conditions and related feedbacks
which are known to play a significant role on the
heatwave temperatures under current conditions.
Finally, we use observed current record-breaking
temperatures and their projected changes to provide a
rough estimate of the summer daily temperature
maxima that could be reached by 2100.
2. Data and method
2.1. Observed and simulated daily maximum
temperatures
Observed daily maximum temperatures (Tmax) over
France are taken from the SQR (Séries Quotidiennes de
Référence, Reference Daily Series in English) dataset
developed by Météo-France. The monthly series were
carefully selected and homogenized from 1950 to 2012
(Gibelin et al 2014). From this first selection, non-
homogenized Tmax were extracted, with a threshold of
maximum number and magnitude of breaks detected
when homogenizing themonthly series (see Dubuisson
and Moisselin 2006 for more details and figure S1
stacks.iop.org/ERL/12/074025/mmedia for the spatio-
temporal distribution of the stations).

We consider two simulations of the ALADIN
(version 5.3) regional climate model (RCM; Colin et al
2010, Tramblay et al 2013) at a very high-resolution
(0.11° or ∼12.5 km): one historical (ALADIN-HIST,
with observed natural and anthropogenic forcings,
1950–2005) and the continuing future simulation
(ALADIN-SCEN, 2006–2100) under the business-as-
usual scenarios of green house gases (GHG) and
aerosols emissions, the Representative Concentration
Pathways 8.5 (RCP8.5; van Vuuren et al 2011).
ALADIN-HIST and ALADIN-SCEN share the same
vegetation and land cover. These two simulations are
part of the World Climate Research Program
Coordinated Regional Downscaling Experiment for
Europe (EURO-CORDEX, Jacob et al 2014). The
lateral boundary conditions and the initial conditions
prescribed to ALADIN are provided by the CNRM-
CM5 global climate model (GCM; Voldoire et al
2012). Note that the driving CNRM-CM5 GCM and
the driven ALADIN RCM have very similar physical
parameterizations ensuring physical consistency.

We also use a large (20 members) initial condition
ensemble (ALADIN-LE) of simulations of the 2075
summer. The ensemble simulations use the EURO-
CORDEX domain and cover the full 92-day period of
the summer months (June, July and August; JJA). All
ensemble members have exactly the same lateral and
initial conditions as those of the ALADIN-SCEN
simulation (the first member of the ensemble). A small
random offset (∼10−4 ppm) to the initial CO2

concentration was added to each ensemble member.
This very small perturbation serves to create spread
among the ensemble members as internally-generated
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variability increases with time (see Sanchez-Gomez
and Somot 2016 for more details on ALADIN internal
variability over a Euro-Mediterranean domain).

Finally, an ensemble of historical and RCP8.5
simulations from 29 global climate models (one
simulation per model; see supplementary table for the
list of models) of the Coupled Model Intercomparison
Project Phase 5 (CMIP5; Taylor et al 2012) is also used
to estimate an uncertainty range for the summer
record maximum value in 2100, as defined below.

2.2. Summer record maximum value
On a given day, a record is broken at the nth year after
the initialization when Tmax (year¼ n) is greater than
the values of all previous years on that day. Records are
independently estimated for each JJA calendar day and
for each station (or model grid point). In this paper we
are interested in the number of records broken in
summer as well as the value of the record, as developed
below.

We first focus on the yearly evolution of the total
number of records broken in summer over France
(i.e. each year the number of broken records is simply
the total number of records summed over all JJA days
and stations). This record evolution is shown under its
normalized form, meaning that we compare this
number with respect to that of a stationary climate
(1 for all years) which is assumed to be consistent with
the beginning of the observations (Bador et al 2016;
see also Supporting Information S1 for more details).

We also focus on the actual value of a record-
breaking temperature, and more specifically on the
summer record maximum value (referred to as the
record maximum value thereafter). The record
maximum value in year X corresponds to the
maximum value of Tmax over all the summer days
from the initial year to year X. In a given year, record-
breaking temperatures are a necessary but not
sufficient condition for a record maximum value to
be broken. A record maximum value is established if
across each JJA day at least one of the record-breaking
temperatures exceeds the previous record maximum
value.

2.3. Spatial clustering of extreme events
To identify homogeneous regions in France in terms of
summer extreme temperatures we use a clustering
algorithm originating frommultivariate extreme value
theory (Coles et al 2001, Beirlant et al 2004, de Haan
and Ferreira 2006, Resnick 2007). This technique is
suitable to extract spatial dependencies from series of
seasonal maxima. Stations with a similar interannual
evolution of summer Tmax maximum are gathered
together in K clusters. Note that no geographical
information is used to cluster the stations. Instead, we
use a statistical distance measuring the proximity of
two stations with respect to their maxima (Bernard
et al 2013 and Bador et al 2015; see supporting
information S2 for more details).
3

The clustering algorithm is applied to the SQR
observations over the period with maximum and
consistent station data availability (1980–2010, see
figure S1). The algorithm identifies five well defined
geographical regions: South-West France (SW),
Eastern France (EA), Britany (BR), Northern France
(NO) and the Mediterranean region (ME). These
regions can be used to characterize the typical spatial
extent of record-breaking temperatures and heatwaves
(figure 1). ME and SW are clearly separated due to
competing influences from the Mediterranean Sea and
the Atlantic. The sensitivity of the results to the
prescribed number of clusters (K) is documented in
Supporting Information (figure S2). It is interesting to
note that the ME region shows the strongest cluster
strength for different K number of clusters. This
highlights the very particular summer climate of this
small region (in terms of temperature extremes)
largely influenced by the Mediterranean Sea. It also
demonstrates the advantage of using a clustering of
extreme events as a geographical selection of 5 regions
in France would probably result in a larger ME cluster,
with more stations taken around the Mediterranean
edge and further inland. All five regions have observed
current record maximum values greater or equal to
42 °C, with the warmest being ME with 42.7 °C. We
use the ALADIN model closest grid point to every
station (see figure S3) to look at the changes in record-
breaking temperatures occurring during the 21st
century in the five regions in France.
3. Results

Figure 2 (top panel) shows the 21st century evolution of
the total number of records broken in summer over
France as simulated by ALADIN-SCEN. Compared to
thefirst half of the 21st century the secondhalf features a
higher frequency of large amplitude record-breaking
events and a robust emergence of the anthropogenic
signal (Elguindi et al 2012, Bador et al 2016). It
comprises three exceptional heatwaves in 2075, 2097
and 2099. The simulated heatwave in 2075 is
characterized by a normalized number of records
around 20, whichmeans that 20 times more records are
broken this summer than expected that far in a
stationary climate time series assumed to be consistent
with the summers of the first decades of observations. It
is also associated with many new record maximum
values, in particular in the EA andNO regions (figure 2,
bottom panel). Despite the warming trend due to GHG
concentration increase, many of the newly established
recordmaximumvalues remain as such until 2100. This
is particularly the case in NO and EA. For the SW, BR
andMEregions, the recordmaximumvalues in 2100 are
reached after year 2095 (see figure S3).

We now focus on the 2075 summer heatwave and
ask how exceptional this event is in the context of its
contemporaneous climate. To get some insight on the



Figure 1. Results from the spatial clustering algorithm applied to the observations. Open circles indicate lack of significance
(silhouette coefficient < 0.5; see supporting information S2 for more details). Regions are numbered with regard to the cluster
strength (average of the silhouette coefficient over significant points only), from the weakest to the strongest (1 to 5), as illustrated by
the colors. For each cluster, the maximum value of observed current summer record maximum value across the stations is indicated.
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extreme character of the simulated 2075 event, we
compare it with the observed 2003 summer heatwave.
Figure 3 shows the changes in record maximum values
between 2075 and 2074, and 2003 and 2002, for the
simulated and observed heatwaves, respectively. Note
that only warm years can change the record maximum
values as by definition this metric includes the
memory of all previous summers up to the considered
year. Both observed 2002 and simulated 2074
summers are within the range of their contemporane-
ous climate and cause almost no change in record
maximum value in France (figure S1 and figure 2,
respectively). Hence, looking at the difference to the
previous year 2002 (2074) does not artificially
influence the magnitude of the 2003 (2075) heatwave
in terms of broken records. The spatial extent of the
2075 heatwave is slightly smaller than that of the 2003
heatwave, whereas its amplitude is larger, in particular
in North-eastern France (EA and, to a lesser extent,
NO). The 2075 heatwave features new record
maximum values that exceed previous records by
1°C–6 °C whereas the range for the 2003 heatwave is
between 1° and 4 °C.

We now examine in more detail the precise timing
the 2075 heatwave. The heatwave duration is defined
using the heatwave index as in Schoetter et al (2015),
which is estimated in the driving CNRM-CM5
simulation over Europe (35°N–60°N; 10°W–30°E).
Based on this index a heatwave is detected if at least
30% of the domain is affected for at least 3 consecutive
4

days by Tmax exceeding the 98th percentile of the Tmax

distribution with respect to a base period (May to
October months from 1979 to 2008). Figures 4(a) and
(b) shows the evolution of Tmax anomalies (relative to
late 21st century climate) averaged over Europe and
France during summer 2075 in the CNRM-CM5
simulation (thick red line). The heatwave onset begins
after 35 days (day 187 of the year) and becomes a real
heatwave after 40 days (day 192; red shading, figure 4
(a)). In France this heatwave is composed of two peaks
(figure 4(b)).

Then we use the ALADIN-LE simulations (thin
colored lines, figures 4(a) and (b)) to describe the
2075 heatwave and investigate the associated mecha-
nisms. Over Europe, the ensemble spread (i.e.
dispersion between the members) is small for the
first 20 days and mean Tmax anomalies are small (less
than 2 °C; figure 4(a)). The ALADIN-LE spread in
mean Tmax anomalies varies with time and is
characterized by 10-to-20 day periods with large
internal variability, in particular over France during
the first peak of the heatwave (figure 4(b)). The first
15–20 days of the heatwave are characterized by a
large spread that increases and then slowly saturates
with time over Europe and France. One member
completely fails to reproduce the heatwave (it actually
simulates a cooling during the first 15 days of
the event) before merging back with the rest of the
ensemble 10 days before the end of the heatwave
(solid orange line, figure 4(a)). Despite the strong



Figure 2. Top Panel: Yearly evolution of the normalized number of records broken in summer over France in ALADIN-SCEN (the
domain is shown in figure 3(c)). Bottom Panel: Yearly evolution of the difference between summer record maximum values and the
2005 value in ALADIN-SCEN. The closest model grid point to every observed station is selected (see figure S3). Stations are grouped
in five regions (left Y-axis), given by the clustering algorithm (see figure 1). For each region, record time series are ordered by
increasing latitudes (from bottom to top). Numbers (right Y-axis) give the regional maximum observed (black) and simulated (green;
ALADIN-HIST) summer record maximum values in 2005 (°C), and their ALADIN-SCEN simulated changes by 2100 for the regional
mean (orange) and maximum (red).
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constraint due to lateral and sea surface boundary
conditions, the ALADIN model thus develops a high
level of internal variability within the regional
domain (Sanchez-Gomez and Somot 2016). This
internal variability has a stronger influence than the
large-scale and sea surface forcing from the CNRM-
CM5 driving model in one case out of 20. The other
19 members all simulate a heatwave albeit with very
different amplitudes for both Europe and France. The
Tmax anomaly difference between the two extreme
members (among the 19 reproducing the heatwave)
5

can reach 2.5 °C–8.3 °C at any time during the
heatwave when averaged over Europe (figure 4(a)).
The temperature spread can even reach higher values
(13.3 °C) when averaged over France (figure 4(b)).

The atmospheric circulation forcing the 2075
heatwave is typical for western European heatwaves
(Cassou et al 2005). The positive temperature
anomalies maintained by a blocking anticyclone over
Europe are initially due to the advection of hot air by a
strong south-westerly flow (see figure S5). The 19
members of ALADIN-LE that simulate the heatwave



Figure 3. Changes in summer record maximum values (°C) between two particular years (after/before a mega-heatwave) in (a) the
observations (2003/2002) and (b) and (c) the ALADIN-SCEN simulation (2075/2074). The closest model grid point to each station is
selected on panel (b) and all grid points in France are considered on panel (c). Black dots show stations or grid points with no change
in the summer record maximum value. Some coastal stations are not associated with a model grid point as they correspond to a sea
and not a land grid point.

Environ. Res. Lett. 12 (2017) 074025
have a large-scale atmospheric pattern (based on daily
sea level pressure—SLP; figure 4(c)) that is similar to
the CNRM-CM5 driving model as soon as the
heatwave begins. Indeed, the spatial pattern correla-
tions between the 19 members of ALADIN-LE and
CNRM-CM5 daily SLP range from 0.84 to 0.94 in
average during the first 5 days of the heatwave (days
192–196; figure 4(c)). The similarity of the large-scale
atmospheric circulation pattern among the 19
members suggests that the atmospheric circulation
is likely not the main driver of the different heatwave
intensity within the ALADIN-LE. The remaining
member (which simulates a cooling; solid orange line)
has a weaker correlation of 0.66 in average during the
first 5 days of the heatwave (days 192–196; figure 4(c)).
This suggests that this particular member does not
6

simulate a heatwave because it does not follow the
large-scale pattern of the driving CNRM-CM5 model.
Interestingly, the SLP pattern correlations between
ALADIN-LE and CNRM-CM5 exhibit a much larger
spread just before the onset of the heatwave (days 180–
192). All 20 ALADIN-LE member correlations are
scattered throughout the 0.43–0.92 range. This is a
nice illustration of the intermittent character of the
internal variability generated by regional climate
models (Giorgi and Bi 2000, Alexandru et al 2007,
Lucas-Picher et al 2008, Sanchez-Gomez and Somot
2016).

We take advantage of the large temperature
spread of the ALADIN-LE ensemble during the
heatwave to identify the mechanisms that can lead
to an amplification of its temperatures. Previous



Figure 4. (a) and (b) Daily evolution of Tmax (°C) anomalies relative to the 2061–2090 climatology and averaged over (a) Europe and
(b) France during summer 2075 for the 20-member ALADIN-LE ensemble (thin colored lines; black corresponds to ALADIN-SCEN)
and CNRM-CM5 simulation (thick red lines). (c) Daily evolution of the spatial correlation between the sea level pressure fields of the
ALADIN-LE simulations and the CNRM-CM5 simulation (interpolated on the ALADIN grid). (d) and (e) Daily evolution of Tmax

anomalies relative to the 2061–2090 climatology and averaged over (d) Europe and (e) EA region in France for the mean and
interquartile range (purple line and shading) of the reduced 19-member ALADIN-LE ensemble (the member with no heatwave -solid
orange line in (a,b,c)- is not considered here). Red and blue lines refer to the mean of two 5-member subsets presenting the lowest
(driest) and highest (most humid) mean values in soil moisture content anomalies during a 5-day period prior to the heatwave onset
(days 184–188; grey shading), respectively. Black dots indicate the days when the mean Tmax anomalies in both subsets are significantly
different (p-value<0.05; T-test). The red shading indicates the heatwave duration (as defined in Schoetter et al 2015) in the CNRM-
CM5 simulation (days 192–221) over Europe.
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studies (e.g. Black et al 2004, Fischer et al 2007,
Garcia-Herrera et al 2010, Stéfanon et al 2012,
Miralles et al 2014) focused on present-day climate
have documented the importance of pre-existing soil
moisture conditions on the amplification of extreme
temperature during heatwaves. Here we follow the
same track to investigate if these mechanisms can also
enhance the amplitude of an extreme heatwave in a
mean climate that is much warmer and drier than the
present-day climate. For this additional analysis, the
7

member without heatwave is removed from the
ALADIN-LE ensemble then reduced to a 19-member
ensemble.

We isolate two groups among the members using
a composite analysis based on the mean soil moisture
anomaly (relative to late 21st century climate) before
the onset of the heatwave. Note that we use the total
soil moisture integrated over a depth that varies
spatially but typically corresponds to values of about
1.5m in France. The first group includes the five
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members with the largest positive soil moisture
anomaly averaged over the domain and over a 5-day
period just before the heatwave onset (days 184–188),
whereas the second one includes the five with the
largest negative values. We apply this analysis to
both Europe and the most impacted region of France
(EA; figures 4(d) and (e)). The two groups are
significantly different in terms of the mean Europe
and EA Tmax anomalies during the first days of the
heatwave, whereas they become indistinguishable
later on. The temperature difference between the two
groups varies between 1.9 and 6.1 °C throughout the
first 10 days of the heatwave in average over both
geographical domains. This suggests that pre-existing
soil moisture anomalies can strongly modulate the
heatwave intensity.

Soil moisture is an important climatic control on
the partitioning between sensible and latent heat flux,
thereby modulating air temperature. We now detail
the mechanism leading to the heatwave temperature
amplification and the regional spatial contrast over
France. We focus on the first 10 days of the heatwave
(days 192–201) when there is a significant relation
between the temperature spread and the pre-existing
soil moisture conditions (figures 4(d) and (e)). First,
we investigate the relationship between the mean
anomalies in soil moisture before the heatwave and
the mean anomalies in evapotranspiration during the
first days of the heatwave in the ALADIN-LE 19-
member ensemble (figure 5, left column). In all
regions, evapotranspiration increases with soil mois-
ture content as indicated by significant inter-member
correlations (p-values< 0.01 for all regions expect
NO with p-values¼ 0.015). To confirm a control of
Tmax by the pre-existing soil conditions we now
quantify the relationship between evapotranspiration
and Tmax during the first days of the heatwave (figure
5, middle column). Tmax anomalies are mainly linked
to evapotranspiration anomalies in SW and ME
(inter-member correlation of −0.90 and −0.86,
respectively, with p-values< 0.01). EA and NO
regions also show a strong relationship with a
correlation of −0.79 and −0.64 (p-values< 0.01)
whereas no significant relationship is found for BR
(correlation of −0.41). Mean Tmax anomalies are
larger in EA and NO than in ME and SW by roughly
3 °C. The origin of the heatwave pattern geographical
distribution could be traced back to the spatial
distribution of total soil moisture and a higher
sensitivity of evapotranspiration to soil moisture
changes when the soil moisture content is already
low (Planton et al 2005). EA and NO are the two
regions the most impacted by the heatwave and these
two regions exhibit drier conditions than the other
regions before the heatwave (days 184–188; figure 5,
right column).

The results of the ALADIN-LE simulations
demonstrate that very severe heatwaves with respect
to their contemporaneous mean climate can occur in
8

a much warmer and drier French regional climate
such as projected under the RCP8.5 scenario. They
also suggest that mechanisms similar as those
operating during present-day heatwave amplification
could still be important. The future occurrence of
such mega-heatwaves is expected to lead to a large
increase in Tmax that human and ecosystems will have
to cope with. Here we quantify the record maximum
values that could possibly be reached in France at the
end of the 21st century. We use a simple approach
based on an anomaly framework where we combine
observed current record maximum values with future
changes as simulated by the ALADIN-SCEN simula-
tion. By the end of the observed period, ALADIN
slightly underestimates the observed record maxi-
mum values (see the right side of figure 2 and see also
table 1). This might not be associated with a cold bias.
Indeed the probability for a heatwave as intense as
observed in 2003 is very low under present-day
conditions (Schär et al 2004, Trigo et al 2005).
Schoetter et al (2015) and Russo et al (2014) show
that none of the CMIP5 models reproduce an event of
such an extraordinary nature over the historical
period. By 2100, ALADIN-SCEN indicates mean
regional changes ranging from 4.4 °C–6.6 °C (aver-
aged over NO and EA, respectively). Regional
maximum increases show that individual locations
can experience even greater changes: 6.6 °C, 7.7 °C,
7.7 °C, 9.6 °C and 9.9 °C for BR, NO, ME, SW and
EA, respectively.

A complete assessment of the different sources of
uncertainty and their contribution to the record
maximum values in France is beyond the scope of
our study as it would require a very large ensemble
of simulations with many RCMs (and many
members per model), many driving GCMs and
different GHG scenarios. However, the ALADIN-LE
ensemble can be used to give a qualitative estimate
of the influence of internal variability (within the
RCM domain) on the 2075 heatwave and associated
record maximum values in 2100 (table 1). For
instance, regional maximum changes 4.5 °C and
3 °C higher than simulated by ALADIN-SCEN are
found in NO and EA (respectively), the two regions
the most impacted by the heatwave. Finally, the
combined use of ALADIN-SCEN and ALADIN-LE
simulations shows that the model can simulate a
change in record maximum value up to 12.9 °C in
France (table 1).

It is possible to give an estimate of the model
uncertainties around these projections using the
CMIP5 multi-model ensemble. We use the CMIP5
ensemble (29 models) to benefit from a larger range of
models compared to the EURO-CORDEX ensemble,
which is only composed of a small number of driving
GCMs and driven RCMs. We focus on the record
maximumvalue in France as the CMIP5models have a
too coarse spatial resolution to attribute meaningful
record values at regional and sub-regional scales. The



Figure 5. Scatter plots of the (relative, %; except for Tmax, °C) mean anomalies in (a,d,g,j,m) evapotranspiration and soil moisture, (b,
e,h,k,n) Tmax and evapotranspiration, in the reduced 19-member ALADIN-LE ensemble (black corresponds to ALADIN-SCEN). The
regression line, value of the Spearman’s rank correlation (r) and associated p-value are indicated on each panel. Mean anomalies in soil
moisture (mm) in the reduced 19-member ALADIN-LE ensemble (vertical lines), compared to the probability density function of the
climatological anomalies. All the anomalies are computed with regard to the 2061–2090 climatology. Tmax and evapotranspiration
anomalies are averaged during the first ten days of the heatwave (days 192–201), whereas soil moisture anomalies are averaged just
before the heatwave to consider pre-existing conditions (days 184–188). All the anomalies are averaged across all the closest model grid
points to each station (see figure S3) for each region in France (one per line as indicated; see figure 1).

Environ. Res. Lett. 12 (2017) 074025
CMIP5 median and inter-quartile range of record
maximum values in France are 11.8 °C and [9 °C–
13.2 °C], respectively. Hence, the 12.9 °C increase in
record maximum value projected by ALADIN appears
9

to be within the 3rd quartile of the CMIP5 ensemble.
The ALADIN model thus simulates regional changes
comparable to the estimates of the global climate
models.



Table 1. Regional observed (SQR station dataset) and simulated (ALADIN-HIST simulation) current summer record maximum values
(°C) and their simulated changes and uncertainties given by the ALADIN and CMIP5 simulations.

summer record maximum value ( °C)

in 2005 changes in 2100 compared to 2005

SQR

observations

ALADIN-HIST

simulations

ALADIN-SCEN

simulation

ALADIN-SCEN + ALADIN-LE

simulations

CMIP5 ensemble

median [inter-quartile]

regional max regional max regional

mean

regional

max

regional max France max

ME 42.7 41.8 5.8 7.7 7.7

NO 42.2 39.8 4.4 7.7 12.2

BR 42.0 40.4 4.5 6.6 6.6 11.8 [9.0, 13.2]

EA 42.4 40.0 6.6 9.9 12.9

SW 42.0 42.6 6.2 9.6 9.6

Environ. Res. Lett. 12 (2017) 074025
4. Summary and discussion

By applying a spatial clustering methodology to
temperature observations, we have identified 5
homogeneous regions in France with regard to
summer temperature extremes. Based on a future
simulation of the ALADIN RCM under the RCP8.5
scenario, we have shown that a summer heatwave at
least as severe relative to its contemporaneous climate
as the observed 2003 heatwave could occur in France
in the late 21st century. This simulated heatwave has a
distinct spatial pattern with the largest anomalies
occurring in Northern and Eastern France.

We have then used a large ensemble (20 members)
of 3-month ALADIN simulations to investigate the
physical processes involved in shaping the heatwave
intensity. While all ensemble members are constrained
to follow the same large-scale circulation pattern
driving the heatwave, the heatwave intensity and
associated temperature anomalies and records differ
by a large amount across the ensemble. In one case, the
internal variability within the RCM domain is even
able to reverse the sign of the temperature anomaly. By
initializing the ensemble one month before the
heatwave onset, we generate different land surface
conditions across the different members simulating
the heatwave. Thanks to a composite analysis based on
pre-existing soil moisture content, we have then
investigated the influence of soil moisture conditions
and related feedbacks on the heatwave magnitude and
spatial pattern. In agreement with similar studies of
observed present-day heatwaves, the results show that
the regions with the driest conditions before the
heatwave experience large temperature anomalies and
a higher number of record-breaking temperatures
during the heatwave. The results also show that
regional heatwave temperature anomalies can vary by
several degrees due to different soil water conditions
prior to the heatwave.

Finally, we have provided a qualitative estimate of
the summer record maximum value that could be
reached in 2100 under RCP8.5. Based on an anomaly
framework, we have combined observed current
10
record maximum value (above 42 °C) with 21st
century changes simulated with ALADIN (from
6 °C to almost 13 °C). This ALADIN simulated change
appears to belong to the inter-quartile range of the
CMIP5 ensemble that indicates a median value of
11.8 °C. This last estimate can be compared to changes
in mean summer temperature in France that have been
estimated to be ∼6 °C from an ensemble of CMIP5
models under RCP8.5 (Terray and Boé 2013). In
France, the change in summer maxima of daily
maximum temperatures is thus expected to be twice as
large as the mean summer change.

Results indicate that record maximum value in
France could easily exceed 50 °C by the end of the 21st
century. These extreme temperatures are experienced
in desert regions, which question how realistic such
projected extreme temperatures could be in France.
Apart from the potential limitations associated with
both GCM and RCM physics, the vegetation could be
further investigated as it also controls the heatwave
magnitude (Stéfanon et al 2012) and will experience
changes with global warming. Besides, the tempera-
ture amplification by land-atmosphere interactions
may not be representative of all types of heatwave in
mid-latitude locations and all seasons. Here we
selected summer heatwaves having a strong influence
on daily maximum temperatures but heatwaves can
also strongly impact night-time temperatures with
serious consequences for human heath.
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