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Abstract

We analyze for the first time the economic contributions of modern industrial robots,

which are flexible, versatile, and autonomous machines. We use novel panel data on robot

adoption within industries in 17 countries from 1993-2007, and new instrumental variables

that rely on robots’ comparative advantage in specific tasks. Our findings suggest that in-

creased robot use contributed approximately 0.36 percentage points to annual labor produc-

tivity growth, while at the same time raising total factor productivity and lowering output

prices. Our estimates also suggest that robots did not significantly reduce total employ-

ment, although they did reduce low-skilled workers’ employment share.—KEYWORDS:

Robots, Productivity, Technological Change. JEL CODES: E23, J23, O30.

1 Introduction

Robots’ capacity for autonomous movement and their ability to perform an expanding set of

tasks have captured writers’ imaginations for almost a century.1 But more recently, robots have
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1Discussions of automata and physical construction of working machines go back to the ancient world. But
according to the Oxford Online Dictionary, the word “robot” comes from robota, the Czech word for ‘forced
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emerged from the pages of science fiction novels into the real world, and discussions of their

possible economic effects have become ubiquitous. These discussions reflect both high expec-

tations and deep concerns. There is a particularly lively debate on the implications of recent

and anticipated developments in robotics and closely related technologies—see for instance

Brynjolfsson and McAfee (2014) and Autor (2015).

This growing interest reflects a profound change in robot capabilities over the past few

decades. Creating robots that are autonomous, flexible, and versatile was a major engineering

challenge, but remarkable progress has been made. Robots can now perform a fairly wide range

of tasks, including welding, painting, and packaging with very little human intervention. These

capabilities set robots apart from earlier waves of automation and more conventional informa-

tion and communication technologies (ICT), which left flexible movement in three dimensions

firmly in human hands. As robots take on more tasks, many people worry that large scale job

losses are looming. In one survey carried out in the UK, 30 percent of respondents believed that

their job could be replaced by a robot in the next 20 years.2

Yet despite the widespread interest and concern, there is relatively little evidence on the

implications of increased robot use for labor productivity, total factor productivity, output prices,

and the employment of workers with different skills across the developed world. Our study

begins to remedy this problem, by shedding light on how industrial robots are changing the

economy. To frame our analysis, we construct a simple model of firms’ decision to adopt

robots. By paying a fixed cost of adoption, firms can employ robots alongside workers to

perform a range of tasks, whose scope varies by industry. Declines in robot prices increase

robot adoption, which raises productivity and wages, and decreases output prices.

Our main contribution is to study industrial robots empirically, using new data from the

International Federation of Robotics (IFR). The IFR measures deliveries of “multipurpose ma-

nipulating industrial robots”, based on the definitions of the International Organization for

labor’. The term was coined in Čapek’s 1920 play R.U.R. ‘Rossum’s Universal Robots’ (http://www.
oxforddictionaries.com/definition/english/robot, accessed on Dec 8, 2014). Robots gained
in popularity following the work of Asimov (1950).

2The survey was carried out by the British TV station Sky News. See results and an accompanying article at
http://interactive.news.sky.com/Robots_Tabs_FULL.pdf and http://news.sky.com/
story/1544448/robot-revolution-40-percent-fear-wipeout-by-machines, respectively;
accessed on March 29, 2016.
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Standardization (ISO), which allow us to compare robot delivery numbers across country-

industry pairs and over time. Specifically, the IFR definition refers to a “Manipulating in-

dustrial robot as defined by ISO 8373: An automatically controlled, reprogrammable, mul-

tipurpose manipulator programmable in three or more axes, which may be either fixed in

place or mobile for use in industrial automation applications” (IFR, 2012, see also ISO defini-

tions here: https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en,

accessed on June 20, 2017).3

Using data from the International Federation of Robotics (2006), we estimate that from

1990-2005 the price of industrial robots in six major developed economies fell by approximately

one half. When quality improvements are taken into account, the fall in prices was even steeper:

by 2005 quality-adjusted robot prices were about one fifth of their 1990 level.

This rapid decline in robot prices led to increased use of robots per human hour worked in

a range of different industries. We use International Federation of Robotics (2012) and EU-

KLEMS (Timmer, van Moergastel, Stuivenwold, Ypma, O’Mahony, and Kangasniemi, 2007)

data to estimate robot density (the stock of robots per million hours worked) in 14 industries

in 17 countries from 1993-2007. Averaged across the 17 countries in our dataset, robot density

increased over this period by more than 150 percent, from 0.58 to 1.48. Among the countries

in our dataset, robot density increased most in Germany, Denmark, and Italy. Among the in-

dustries, transport equipment, chemicals, and metal industries led the way in increasing robot

density.

Using our panel data, we find that industry-country pairs that saw more rapid increases in

robot density from 1993-2007, experienced larger gains in labor productivity. These results are

robust to controlling for a range of country-specific and industry-specific time varying factors,

as we explain below. At the same time, our findings suggest that larger increases in robot density

translated into increasingly small gains in productivity, suggesting that there are diminishing

marginal gains from increased use of robots.

3The IFR data have the advantage of using a “Gold Standard” definition of robots, but unfortunately these data
are not available at lower levels of disaggregation. This means that there are limits to the nature of the analysis that
we conduct here, but we nevertheless think that it is informative for the debate on robots’ role in the world’s labor
markets.
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In order to mitigate concerns about the possibility of reverse causality from productivity

growth to increased robot adoption, we provide further evidence on the economic role of robots

using two new instrumental variable strategies. To construct our first instrument we use data

on “robot applications” (IFR, 2012), which classify the tasks performed by robots. We do not

use information on the extent of robot use in each of these tasks, which is likely endogenous to

industry conditions. Instead, we match these to data on US occupations in 1980, before robots

became ubiquitous, and define occupations as “replaceable” if by 2012 their work could have

been replaced, completely or in part, by robots. We then compute the fraction of each industry’s

hours worked in 1980 that was performed by occupations that subsequently became prone to

replacement by robots. We also construct a second new instrument, which we call “reaching

& handling,” which builds on technological advances made in the use of robotic arms. As we

explain below, this robotic capability is largely driven by technological supply factors, and not

by industries’ task requirements. To construct this instrument we measure the extent to which

industries used occupations requiring reaching and handling tasks, compared to other physical

tasks in 1980. While neither of these instruments solves all potential problems of omitted

variables and reverse causality, they provide additional checks on our empirical approach.

Both our industry-level “replaceability’ index and “reaching & handling” strongly predict

robot densification (an increase in robot density) when robot prices fell. Two-stage least squares

(2SLS) estimates using replaceability and “reaching & handling” (and both) as instruments for

robot densification show that increased use of robots raised labor productivity, consistent with

our OLS estimates. These results are again largely unchanged when we allow for country-

specific trends in outcomes.

We acknowledge that neither instrument is perfect, since both reflect variation across in-

dustries in the fraction of tasks that could potentially be replaced by robots, which may be

correlated with other changes over time. So we interpret our findings cautiously. It is never-

theless reassuring that both instrumental variable estimates yield estimates that are similar in

magnitude. These estimates are, in turn, somewhat larger than our OLS estimates, consistent

with the presence of measurement error in our measure of robot adoption, as we explain in the
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data section.

Though the instrumental variables estimates rely on variation across industries over time,

and therefore do not allow us to control for industry-specific trends, we note that the OLS

estimates are robust to controlling for industry trends.4

The OLS and 2SLS results are robust to a large set of specification checks, involving alter-

native measures of robot use, controls for the changes in other inputs such as labor of different

skill levels as well as ICT and non-ICT capital, and controls for other industry-level task char-

acteristics such as routine-ness and offshoreability.

We calculate that on average across the 17 countries in our dataset, robot densification from

1993-2007 raised the annual growth of labor productivity by about 0.36 percentage points (com-

pared to a mean growth of 2.4 percent). These figures are conservative, since they are based on

the lower range of our estimates of the impact of robots. These figures are also fairly similar to

the estimated total contribution of steam technology to British annual labor productivity growth

of around 0.35 percentage points (Crafts, 2004) sustained from 1850-1910, a period which

is about four times longer than the period we study, although robots’ contribution could well

continue for years to come. The overall contribution of robots is lower than the upper range

of estimates of ICT’s contribution to EU and US labor productivity growth form 1995-2005,

which O’Mahony and Timmer (2009) estimate at 0.6 and 1.0 percentage points, respectively.

But importantly, the total value of ICT capital services is considerably larger than that of robot

services.5

To provide further evidence on industrial robots’ contribution to the economy, we turn to

separate data on 24 case studies of robot adoption. The data come from the Danish firm Uni-

versal Robots, which produces collaborative industrial robots for a range of applications. These

case studies indicate that investing in robots can be highly profitable, with repayment periods

of 2-18 months. Our calculations suggest that this reflects high rates of return, on the order of

25-200 percent annually.

4We explored the possibility of interacting the instruments with country dummies, or with an indicator for being
located in a country that is among the world leaders in transport equipment. The resulting estimates, controlling
for industry trends, were similar to our main OLS and 2SLS estimates, but suffered from a lack of statistical power.

5The contribution of robots to growth is also lower than that of post-war road construction in the US, which
Fernald (1999) estimates at 1 percent for the period 1953-1973.
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Following our investigation of robots and labor productivity, we turn our attention to study-

ing their impact on employment. Our preferred OLS and 2SLS estimates from the country-

industry panel of robots show no significant implications for aggregate hours worked from

robot densification. When we look at the hours worked by different skill groups, however, we

find that robots appear to reduce the share of hours worked by low-skilled workers relative to

middle-skilled and high-skilled workers. These results are consistent with viewing robotics

technology as skill-biased. At the same time, we find that unlike ICT, robots do not polarize the

labor market (at least across the sectors included in our sample), but appear to hurt the relative

position of low-skilled workers rather than middle-skilled ones.6

Finally, we estimate how robot densification changes other outcomes. We find that it appears

to reduce output prices, benefiting consumers and downstream producers. It also appears to

boost total factor productivity (TFP) and average wages.7

During the period we analyze, industrial robots were used in just under a third of the econ-

omy (as averaged across the countries in our dataset) and service robots were still in their in-

fancy. This has left plenty of potential for increased use of robots in other industries. Moreover,

as new robot capabilities are developed, they may be used more intensively in the industries that

are already using them. This suggests that the contribution of robots to future economic growth

may be substantial. At the same time, our finding of diminishing marginal gains suggests that

ever increasing robot densification is not a panacea for growth.

Our study is related to the large literature on the effects of more conventional ICT.8 Sub-

stantial gains from ICT have been documented at the firm level (Basker, 2012; Bloom, Sadun,

and Van Reenen, 2012; Brynjolfsson and Hitt, 2000; Doms, Jarmin, and Klimek, 2004). At the

level of industries or countries it appeared initially to be difficult to detect the impact of ICT

(Solow, 1987). Stiroh (2002) presents evidence that ICT production and use are associated with

faster productivity growth in US industries, and O’Mahony and Timmer (2009) estimate the

6For related discussions of the effect of ICT on skill demand, see e.g. Michaels, Natraj, and Van Reenen (2014)
and Autor (2014).

7We do not, however, find any significant implications of robot densification for changes in the labor share
(results available on request).

8There is some overlap between ICT (software, computing and communications equipment) and robots, since
the latter typically feature computing equipment for programming and control. But most of the hardware compo-
nents of robots are not considered ICT.
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contribution of ICT to EU and US aggregate labor productivity growth form 1995-2005 at 0.6

and 1.0 percentage points, respectively, applying standard growth accounting. But recent work

on the US finds that gains in productivity are concentrated in ICT-producing industries, and not

in ICT-using industries (Acemoglu, Autor, Dorn, Hanson, and Price, 2014). At the same time,

the macro literature has been concerned with the possibility that productivity gains from tech-

nology in general may have slowed down. Gordon (2012) expresses a particularly pessimistic

view, and there are broader worries about secular macroeconomic stagnation (Summers, 2014;

Krugman, 2014), although others remain more optimistic (Brynjolfsson and McAfee, 2014).

None of these works, however, provides direct evidence on the productivity of robots. Against

this backdrop, our study provides a systematic evaluation of industrial robots and their contri-

butions to productivity growth, which we estimate using variation over time across countries

and industries.

There is also a literature about earlier waves of automation, e.g. Dunne (1994), Doms,

Dunne, and Troske (1997), Bartelsman, Leeuwen, and Nieuwenhuijsen (1998), Bartel, Ich-

niowski, and Shaw (2007), and Hunt and Hunt (1983). Our study looks at a later period, when

the capabilities of robots to perform productive tasks in a cost effective way improved dramat-

ically, as we explain below. Moreover, our study covers a larger set of countries than most of

these preceding papers.9

In addition to studying robots’ relationship to productivity, we also shed light on the con-

cerns that they might have a negative effect on employment. Fears that technological inno-

vations destroy jobs are not new, and the Luddites’ destruction of machines during the early

nineteenth century is a striking example (Hobsbawm, 1952). A growing literature has studied

the effects on labor demand of ICT in general, but not of robots.10 In recent work, Brynjolfsson

and McAfee (2014), Ford (2009), and Frey and Osborne (2017) argue that in the future robots

9One recent exception is independent research on robots (Kromann, Skaksen, and Sorensen, 2012). Unlike
that study, ours makes a more systematic effort to identify plausibly exogenous variation in robot use in order to
separate it from potential confounders.

10For evidence on the labor market effects of ICT, see for example Autor, Katz, and Krueger (1998), Autor, Levy,
and Murnane (2003), Acemoglu and Autor (2011), Michaels, Natraj, and Van Reenen (2014), Goos, Manning,
and Salomons (2014), Akerman, Gaarder, and Mogstad (2015). A growing literature analyzes theoretically the
impact of increased automation on the economy (Hemous and Olsen, 2014; Feng and Graetz, 2015; Acemoglu and
Restrepo, 2016), but does not provide empirical evidence on the impact of robots.
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will likely replace many existing jobs. These concerns have been exacerbated by the evidence

that labor’s share of national income has been falling (Karabarbounis and Neiman, 2014; Elsby,

Hobijn, and Sahin, 2013). At the same time, disagreements about the potential effects of robots

on the labor market are presently common even among experts in the field (Pew Research Cen-

ter, 2014). Our study contributes to this literature by evaluating the impact of robots on hours

worked in industries that employ them across the developed world.

In a recent paper, Acemoglu and Restrepo (2017) build on our use of IFR data on robots, but

restrict their attention to geographic variation within the US. Unlike theirs, our paper utilizes

data on actual robot use within countries (by industries), whereas the IFR data do not measure

actual robot use by sub-national geography. While we report first stage regressions and compare

OLS with 2SLS estimates, such exercises are impossible when using the IFR data within coun-

tries. Our study also spans countries that use robots more intensively: in 2007 robot density

in the US was marginally lower than the mean across the 17 countries in our study, and more

than three times lower than in Germany, which is covered in our study. Our main outcome of

interest (productivity) is also different from theirs (employment), and whereas they argue that

robots reduce overall employment we find a significant negative implications of robots only for

the employment of low skilled workers. Nevertheless, as another recent paper of ours (Graetz

and Michaels, 2017) suggests, our results may still be compatible with theirs if the effects of

new technologies such as robots are different in the US.

The remainder of our paper proceeds as follows. Section 2 presents a model of robot adop-

tion. Section 3 describes our data. Section 4 contains our empirical analysis. Lastly, Section 5

concludes.

2 Adopting Robots in Production: A Model of Technology Choice

To guide our empirical analysis, we develop a simple model of firms’ decisions to adopt robot

technology and use robots in production. The model describes the conditions for the adoption

of robots alongside human workers, and characterizes how a decline in robot prices affects labor

productivity, employment, output, and product prices.
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Consider an economy featuring a continuum of industries indexed by i, and within each in-

dustry a continuum of varieties indexed by j. Preferences are described by a two-tier nested con-

stant elasticity of substitution (CES) utility function, U =
(∫ 1

0 C(i)
ε−1

ε di
) ε

ε−1 , C(i)=
(∫ 1

0 C(i, j)
η−1

η d j
) η

η−1
,

where ε and η are the across- and within-industry substitution elasticities. We assume through-

out that η > 1, and that η > ε .11 There is a unit measure of consumers, each supplying L units

of labor inelastically. Consumers own all other factors of production and all firms in the econ-

omy. Consumers are identical in all respects, including tastes, labor productivity, and ownership

of assets.12

Within each industry, there is a unit mass of monopolistically competitive firms, and each

variety is produced by one such firm. Production technologies are constant across varieties.

Output Y (i, j) in industry i and firm j is produced by combining the outputs Y (i, j,τi) from an

industry-specific continuum of tasks, indexed by τi, via a CES production function Y (i, j) =(∫ 1
0 Y (i, j,τi)

σ−1
σ dτi

) σ

σ−1 , where σ is the elasticity of substitution between tasks.

We assume that people can perform all the relevant tasks, while robots can only perform a

strict subset of these tasks. Firms that employ robots in any task incur a fixed cost of ϕ units

of labor. This means that there is a choice of technology between one that uses both robots and

labor, and one that only uses labor. We assume that robots can only be used in a limited set of

tasks, whose share in industry i is given by α(i). As we discuss below, industries differ in the

share of tasks that can be performed by robots. In the empirical part we proxy these differences,

which predate the widespread use of robots, by the prevalence of tasks that correspond to the

IFR’s list of robot applications and by the prevalence of reaching and handling tasks. In the

model, we allow α(i) to range from 0 to α ∈ (0,1), and as a normalization we assume α ′(i)> 0,

so that i indexes industries’ replaceability.13

11The assumption that η > 1 means that goods within the same industries are gross substitutes for each other.
The assumption η > ε means for instance that the relative quantity of two different types of cars that consumers
demand increases by more in response to a fall in the relative price of these types of cars, than the relative quantity
of food and cars increases in response to a fall in the price of food relative to cars. For simplicity, we assume that
all industries and each variety within an industry are equally important for consumers’ utility.

12In the empirical part we also investigate how robots affect employment and earnings of different skill groups.
However, we prefer to keep labor homogenous in our model, since the main focus of the paper is how robots affect
labor productivity, output, prices, and total sectoral employment.

13α represents the maximum share of tasks in any sector that can be performed by robots. We assume that this
share is less than one, since (for now at least) some human intervention is always required.
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Subject to the constraints above, robots can be hired at an exogenous rental rate of ρ .14

Labor earns a nominal wage w and is perfectly mobile across industries and uses. We choose

labor as the numeraire good in our model, so that w = 1 and all prices are expressed in terms of

wage units.15

We assume that in tasks that can be performed by robots, robots and workers are perfect

substitutes, Y (i, j,τi) = R(i, j,τi)+L(i, j,τi), capturing robots’ ability to perform certain pro-

duction processes autonomously. R(i, j,τi) and L(i, j,τi) are the amounts of robots and labor

hired, respectively. If robot use is infeasible, Y (i, j,τi) = L(i, j,τi).16 We assume throughout

that ρ < 1. This means that conditional on using any robots, firms employ them in all replace-

able tasks—and in equal amounts in each task due to our simplifying symmetry assumptions.

Labor is employed in equal amounts in the remaining tasks. Therefore, we can express Y (i, j)

in terms of the amounts of robots and labor hired, conditional on technology choice,

Y (i, j) =


Y R(i, j) = L(i, j) non-robot using,

Y N(i, j) =
(

α(i)
1
σ R(i, j)

σ−1
σ +(1−α(i))

1
σ L(i, j)

σ−1
σ

) σ

σ−1 robot using.

(1)

The marginal cost χ(i, j), conditional on technology choice, is

χ(i, j) =


χN(i) = 1 non-robot using,

χR(i) =
(
α(i)ρ1−σ +1−α(i)

) 1
1−σ robot using.

(2)

14This means that robots are supplied perfectly elastically. This simplifying assumption is common in papers on
technological change that is specific to equipment capital, for instance Greenwood, Hercowitz, and Krusell (1997)
and Autor, Levy, and Murnane (2003), and it implies that the final good can be converted into robots at a fixed rate.

15One of the outcomes we consider in the empirical part is the real wage. In the model, the real wage can be
defined as the inverse of the economy-wide price level.

16We could also include non-robot capital and assume that Y (i, j,τi) = K(i, j,τi)
β [R(i, j,τi)+L(i, j,τi)]

1−β and
Y (i, j,τi) = K(i, j,τi)

β L(i, j,τi)
1−β , where K(i, j,τi) is the amount of non-robot capital employed in each task.

This would not affect any of our results. One may argue that this Cobb-Douglas formulation, while appropri-
ate for structures capital, would still not capture the role of non-robot equipment capital such as computers, or
information and communication technology (ICT) in general. Indeed, the model would need to feature worker
heterogeneity and a richer task framework to do ICT justice, given the large literature documenting its skill- and
task-bias (Acemoglu and Autor, 2011). An important difference between robots and ICT is that robots take over
entire production processes completely, whereas ICT substitutes for human labor more partially, and direct inter-
actions between computers and workers remain critical in production. Since ICT is not the focus of our paper, we
prefer this simpler setup, which in our view still captures the main aspects of robot adoption.
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Also, when using robots, cost minimization implies an optimal robots-to-labor ratio R(i, j)
L(i, j) =

α(i)
1−α(i)ρ

−σ .

Firms’ technology choice is simple: adopt robots when profits from doing so exceed profits

from using the labor-only technology by at least the fixed cost of using robots, ϕ . We show

in the Theory Appendix that robots are only adopted in sectors whose share of replaceable

tasks (weakly) exceeds a critical value. A fall in the fixed cost of robot adoption, or in the

rental price, leads to a decrease in this critical value.17 The intensive margin of robot use is

not affected by the fixed cost of robot use, but by the robot rental rate ρ: a fall in this rate

increases the optimal robots-to-labor ratio, and this increase is larger in industries with a higher

share of replaceable tasks.18 Thus, the model’s implications motivate our empirical strategy of

instrumenting increased robot use with an industry’s share of replaceable hours or the relative

prevalence of reaching and handling.

While the discussion thus far has focused on the determinants of robot use and on the mo-

tivation of our instrumental variables strategies, we now turn to the model’s predictions for the

effects of increased robot use. The constant-returns-to-scale property of the production function

(1) implies that output per worker depends only on the robot-to-labor ratio, which is decreas-

ing in the rental rate. Hence, a fall in the rental rate ρ leads to a rise in labor productivity in

robot-using industries. For the final two results, we focus on industries in which the ratio of

robot-using firms within an industry equals either 0 or 1—this is for the sake of tractability.

Given consumer demand, markup pricing, and the fact that χR(i) is increasing in ρ , the model

predicts that a fall in the rental rate ρ reduces (increases) the robot-using industries’ price (out-

put) relative to that of other industries.

Lastly, the model predicts how employment changes when robots become cheaper. As we

prove in the Theory Appendix, a fall in the rental rate ρ leads to a rise (a fall, no change) in the

robot-using industries’ employment relative to that of the others if and only if ε > σ (ε < σ ,

ε = σ ). The intuition for this result may be stated as follows. A decline in robot prices induces

firms to substitute robots for labor, but also to reduce their relative output price. Consumers, in

17If an industry uses robots, there are two possibilities: either all firms within the industry use robots, or only a
fraction of firms do. In the latter case, firms within the industry are indifferent between the two technologies.

18In our empirical work we do not measure ρ directly, but instead use the purchase price of robots.
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turn, buy relatively more of the robot-using industries’ output. Whether the increased output is

met by the increase in the robot input or whether an inflow of workers is required, depends on

whether firms’ response to the fall in the price of robots is stronger than that of consumers to

the fall in the relative output price, as measured by σ and ε .19

To sum up, our model suggests that increases in robot density caused by a fall in the price of

robots should lead to a fall in output prices and a rise in output and labor productivity, while the

effect on hours worked is ambiguous. Moreover, industries with a higher share of replaceable

hours will be more likely to adopt robots early, and will increase robot density more, providing

motivation for our instrumental variables strategy.20

3 Data Description

Our main source of data on robots is the International Federation of Robotics (2012), which

compiles data on industrial robots from national federations of robot manufacturers. The IFR

measures deliveries of “multipurpose manipulating industrial robots” based on the definitions

of the International Organization for Standardization. Their definition refers to a “Manipulating

industrial robot as defined by ISO 8373: An automatically controlled, reprogrammable, multi-

purpose manipulator programmable in three or more axes, which may be either fixed in place

or mobile for use in industrial automation applications” (International Federation of Robotics,

2012, see also ISO definitions at https://www.iso.org/obp/ui/#iso:std:iso:

8373:ed-2:v1:en). Each element of the definition is essential for a machine to be consid-

ered an industrial robot. For instance, a manipulator that is not reprogrammable or that has a

single purpose is not considered an industrial robot.21

Typical applications of industrial robots include assembling, dispensing, handling, process-

ing (for instance, cutting) and welding, all of which are prevalent in manufacturing industries;
19We also investigated the effects of a rise in the replaceability share α(i) in a single industry. These effects are

qualitatively identical to those of a fall in ρ described here.
20While not modeled here, increased robot use could also facilitate higher product quality and/or variety, and

this could positively affect product demand and employment.
21ISO defines a manipulator as a “machine in which the mechanism usually consists of a series of segments,

jointed or sliding relative to one another, for the purpose of grasping and/or moving objects (pieces or tools)
usually in several degrees of freedom... A manipulator can be controlled by an operator, a programmable electronic
controller...”.
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as well as harvesting (in agriculture) and inspecting of equipment and structures (common in

power plants).22

The IFR provides data on the number of robots delivered to each industry, in each country

and year.23 We construct the stock of robots based on deliveries using the perpetual inventory

method, assuming a depreciation rate of ten percent.24 This approach is similar to the EUK-

LEMS procedure for computing the stock of ICT capital. We set the initial (1993) value of our

stock measure equal to the corresponding estimate of the robot stock provided by the IFR.25 In

addition to the quantity of robots employed, we also attempt to measure “robot services” using

turnover-based prices. Because of the high level of aggregation of the price data, we consider

the quantity measure more reliable. We report robustness checks using robot services.26

Our second major source of data for this paper is EUKLEMS (Timmer, van Moergastel,

Stuivenwold, Ypma, O’Mahony, and Kangasniemi, 2007). These data include information

on inputs (including breakdowns of capital and labor aggregates), outputs, and prices at the

industry-country-year level. We use data from the EUKLEMS March 2011 update for value

added, hours worked, capital and labor compensation, breakdown of the capital input; and the

EUKLEMS March 2008 release for the breakdown of the labor input.27 IFR and EUKLEMS

data use different industry classifications at varying levels of aggregation. The most detailed

breakdown of EUKLEMS industries that allows us to consistently match the IFR data is shown

in Appendix Table A1. Of the 28 EUKLEMS industries we are able to match 14. These include

all manufacturing industries (except “machinery, not elsewhere classified”) as well as agricul-

ture, mining, utilities, construction, and “education and R&D”. The IFR industries we do not use
22Besides industrial robots, the IFR also started reporting on service robots in 2002. However, service robots

were then still in their infancy, and the IFR does not provide country-industry-level data on service robots during
the period we analyze.

23The IFR aims to capture the universe of robot suppliers: “The statistical data collected in the present World
Robotics are based on consolidated data provided by nearly all industrial robot suppliers world-wide” (IFR, 2012,
p.19).

24We explore different depreciation rates ranging from 5-15 percent, and find that our results are robust (results
available on request).

25The IFR’s estimates of robot stocks are based on the assumption that the service life of a robot is exactly
twelve years. While we prefer to use a measure of the robot stock that is based on more conventional assumptions
about depreciation, we must rely on the IFR estimates to initialize our series of robot stocks.

26For a number of countries, the IFR data do not break down deliveries by industry in early years, so we need
to impute base-year robot stocks for these countries. See the Data Appendix for details. Our estimates are largely
unchanged when we exclude the countries with imputed base-year stocks (results are available upon request).

27Our choice of EUKLEMS releases ensures that for each set of variables we use the most recent version.
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are “all other manufacturing”, “all other non-manufacturing”, and “unspecified”. This means

we lose about 16 percent of deliveries on average, mainly accounted for by the “unspecified”

category.

The first year for most of our analysis is 1993, the first year covered in the IFR data, and

the last year we use is 2007.28 The IFR data end only in 2011, but coverage in the EUKLEMS

data becomes uneven after 2007. Furthermore, a virtue of omitting post-2007 data from the

analysis is that this way our results are not influenced by the large cyclical fluctuations of the

Great Recession and the subsequent recovery. The countries included in our sample are shown

in Appendix Table A2.29

Nominal variables such as value added at current prices or compensation of labor and capital

are reported in units of local currency in the EUKLEMS data. When comparing these variables

across countries, we convert them to US$ using annual nominal exchange rates from the Penn

World Table, Version 8.0 (Feenstra, Inklaar, and Timmer, 2013). We measure real variables in

2005 US$.

All the descriptive statistics and estimates that we report, unless noted otherwise, are weighted

by an industry’s initial (1993) share of hours in the country-wide amount of hours worked. We

do this to ensure that our estimates reflect the relative importance of industries within countries.

However, we give equal weight to each country. Our weighting procedure is the same as that of

Michaels, Natraj, and Van Reenen (2014).

Our main dependent variable is the growth in labor productivity, computed using changes

in value added and hours worked. More precisely, for each country-industry cell we compute

the log difference of both real value added and hours between 1993 and 2007. We define

labor productivity as the ratio of real value added to hours worked, and hence its growth is

28We use EUKLEMS data going back to 1979 for a falsification exercise, but for the most part our analysis is
focused on 1993-2007. While the vast majority of variables are non-missing in 1993 and 2007 for all countries and
industries, there are some exceptions. For instance, the breakdown of the labor input ends in 2005. In such cases,
we use information closest to the relevant year. See the Data Appendix for details.

29The major robot-using countries covered in the IFR data but dropped from our sample include China and
Japan. While China is absent from the EUKLEMS data, basic variables such as output and hours worked can be
found in World KLEMS (Wu, 2012). However, these data start only in 1999, which is much later than the starting
date of our analysis. We drop Japan because the reported deliveries and stocks feature changes over time which are
due to substantial reclassification of the machines classified as “robots” for the purpose of inclusion in the data, as
we learned from personal communication with the IFR.
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equal to the difference between the growth in value added and the growth in hours. We also

consider as outcomes the growth of output prices, TFP, and average wages, changes in the

labor share, as well as changes in the share of hours worked by three different skill groups:

high, middle, and low. High-skilled workers include those with a college degree and above.

While there is some variation across countries owing to differences in educational systems, the

group of middle-skilled workers usually consists of high school graduates, people with some

college education, and those with nonacademic professional degrees (Timmer, van Moergastel,

Stuivenwold, Ypma, O’Mahony, and Kangasniemi, 2007, see pp.28-31).

The main regressor in our empirical analysis is based on our measure of robot density, which

we define as the number of robots per million hours worked.30 We refer to changes in robot

density over time as “robot densification” or simply “robot adoption”. As we discuss further

below, changes in robot density are mostly small and positive (or zero), but the distribution has

a long right tail. This makes fitting a linear model using raw changes in density challenging. In

our main analysis we therefore use as regressor the percentile of changes (based on the weighted

distribution of changes). We verify in robustness checks that our results are robust to a range of

alternative functional forms.31

Our first instrument for robot densification is an industry-level measure that we call re-

placeability.32 We construct this instrument using data from IFR on robot applications, the US

Census occupational classifications, and the distribution of hours across occupations and indus-

tries from the 1980 US Census (Ruggles, Alexander, Genadek, Goeken, Schroeder, and Sobek,

2010). The IFR distinguishes between different applications of robots, including (among oth-

ers) welding, painting, and assembling (IFR, 2012, p.33). We take the 2000 Census three-digit

occupational classification and assign a replaceability value of one to an occupation if its name

30In this definition we largely follow the IFR, except that the IFR defines robot density as the ratio of the number
of robots to workers. We prefer to use hours to normalize the number of robots, since workers can differ in the
number of hours that they work.

31We acknowledge that there are limitations to the use of percentiles in quantifying our estimates, but we think
that this use is justifiable given our analysis of the functional form relationship between robot use and productivity,
as we discuss below. In Section 4.3, we also report our attempt to translate our regression estimates into evidence
on the magnitude of robots’ economic impact.

32Though the question and context differ, our instrument shares with Rajan and Zingales (1998) the approach of
identifying which sectors are most exposed to a particular change, and using this to learn about the consequences
of that change.
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contains at least one of the IFR application categories and zero otherwise.33 We then map our

replaceability measure into the 1990 Census occupational classification, which is available for

the 1980 and 2000 censuses. If several 2000 occupations map into one 1990 occupation, then

we assign the 1990 occupation a replaceability value of one if and only if at least one of the

corresponding 2000 occupations has a value of one.

Our second instrumental variable is a measure of how prevalent the tasks “reaching” and

“handling” were in each industry, relative to other physical demands, prior to robot adoption.

This instrument harnesses one of the salient features of robot adoption during our period of

analysis, namely the widespread use of robotic arms. For example, in discussing the types of

industrial robots by mechanical structure (and not by application), IFR (2012) lists five differ-

ent types: Cartesian, SCARA, Articulated, Parallel and Cylindrical. Three of these five types

(Cartesian, Articulated, and Parallel) are defined as having arms. Therefore, it seems likely that

robotic arms are a technological characteristic of robots that comes from the supply side, and

is not driven by demand side factors that may reflect reverse causality. The Revised Fourth

Edition of the Dictionary of Occupational Titles (United States Department of Labor, 1991)

indicates whether a physical demand occurs never, occasionally, often, or constantly in a given

(human) occupation.34 For each physical demand k, we create a dummy variable Dk indicating

whether the demand is present (that is, not coded as never occurring). We then compute the rel-

ative prevalence of reaching and handling as (Dhandling +Dreaching)/∑k Dk separately for each

occupation.

To measure replaceability and reaching & handling at the industry level, we first assign

these variables to each individual in the 1980 IPUMS Census based on their reported 1990

occupation. Next, we assign to each individual one of our 28 EUKLEMS industries based on

a crosswalk to the 1990 Census industry classification. We compute the fraction of replaceable

hours for each of the 14 robot-using industries by dividing the sum product of replaceability

33We also considered using older Census occupational classifications to construct our instrument. Given the
changes in occupational terminology over time, we found that the matching of occupation names and robot appli-
cations works much better when using a classification that is more contemporaneous with the IFR report.

34The physical demands are strength, climbing, balancing, stooping, kneeling, crouching, crawling, reaching,
handling, fingering, feeling, talking, hearing, tasting/smelling, near acuity, far acuity, depth perception, accommo-
dation, color vision, and field of vision.
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and annual hours worked by the total sum of hours worked (applying person weights both

when computing the numerator and the denominator).35 The replaceability values represent

an upper bound to the share of hours that is replaceable, because occupations are classified as

replaceable if even a part of their work can be replaced by robots, and this part need not be

large. We compute the intensity of reaching & handling at the industry level by averaging that

variable across individuals in the 1980 Census (applying person weights). In addition to the

measures that we construct ourselves, we use industry-level task variables (Abstract, Routine,

Manual, and Offshoreability) following Autor and Dorn (2013).

Finally, to provide evidence on robots’ productivity at the micro level, we use data on 24

case studies from the Danish robot manufacturer Universal Robots.36 These case studies in-

clude the adoption of lightweight collaborative robots in a wide range of industries, including

pharmaceuticals, food, plastics, machine parts, glass, and furniture. Admittedly, these case

studies may not be representative of all industrial robot adoption episodes. But they comple-

ment our main dataset by providing us with a rare window on the economic consequences of

using contemporary robots at the firm level.

4 Empirical Analysis

In the previous section, we have described the construction of our data containing information

on labor productivity, labor and capital inputs, and critically, robot use, for 238 country-industry

pairs between 1993 and 2007. We now turn to the empirical analysis. We first document the in-

creased use of industrial robots across countries and industries and present our data graphically

in Section 4.1. Next, we describe the results on the impact of robots on productivity from our

preferred OLS and 2SLS specifications in Section 4.2. We evaluate the economic importance of

robots by quantifying their contribution to aggregate growth in Section 4.3. Finally, we present

results for additional outcome variables, such as TFP and wage growth, and the shares of hours

worked by different skill group, in Section 4.4.

35We also computed a replaceability measure based on the wage bill, which gave similar results albeit with a
slightly weaker first stage.

36We accessed these case studies on March 29, 2016 at http://www.universal-robots.com/
case-stories/#.
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4.1 Descriptive evidence

We begin our empirical analysis by describing the use of robots in the seventeen countries we

analyze. These include the US, fourteen European countries, South Korea, and Australia. As

panel A of Appendix Table A2 shows, in 1993, the average robot density (robots per million

hours worked) in our sample was 0.58.37 Robot densities, in robots per million hours worked,

were highest in Germany (about 1.7), followed by Sweden (about 1.4), Belgium (1.2) and Italy

(about 1.1). The figure for the US was just above two-thirds of the 17-country average. Four

of the 17 countries (Australia, Greece, Hungary, and Ireland) had either no industrial robots or

almost none.38

Panel B of Appendix Table A2 reports mean changes by country in robot densities from

1993-2007. The leading country was again Germany (about 2.7), followed by Denmark (about

1.6) and Italy (about 1.4). By 2007 industrial robots were employed in all the seventeen coun-

tries in our sample. The most striking fact from Appendix Table A2 is that from 1993-2007,

mean robot density across the seventeen countries that we analyzed increased by more than 150

percent.

The most natural explanation for this rapid increase in robot intensity is the dramatic fall

in robot prices. The International Federation of Robotics (2006) collects list prices of robots

reported by surveyed companies in selected countries. Sub-figure (a) of Figure 1 shows that

from 1990-2005, the price of robots in the six countries for which we have aggregate annual

price data (US, France, Germany, Italy, Sweden, and UK) roughly halved.39 Even this impres-

sive fall, however, does not reflect the full change in robot prices. Sub-figure (b) of Figure 1

shows that on average across the six countries in our sample, quality-adjusted robot prices fell

by almost 80 percent. Even if we restrict our attention to 1993-2005, the average decline in

37Recall that the means we report are averaged within country using base period employment shares as weights,
but the average across countries is unweighted.

38For most countries, a fraction of robot deliveries (typically less than 20 percent) is always classified as “un-
specified”, and is thus not part of our analysis. This means that we underestimate true robot densities. The fraction
of “unspecified” deliveries is particularly large even in 2007 for Australia (82 percent) and Ireland (56 percent).
These countries belong to the group for which we need to impute base-line robot stocks, and we show below that
our results are robust to excluding this group.

39As we discuss in the data section, for reasons of data availability we use a turnover-based measure of prices,
rather than the list-based one, in parts of our analysis.
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quality-adjusted robot prices was still around 50 percent.

In light of this rapid fall in robot prices, it is unsurprising that robots were widely adopted

not only across countries, but also across industries. Appendix Table A3 reports the means for

the same variables as Appendix Table A2, except this time for each of the fourteen industries in

our dataset. In 1993 the transport equipment and metal industries led in the use of robots, with

about 5.4 and 2.4 robots per million hours worked, respectively, while construction, education,

mining, and utilities had negligible robot densities. From 1993-2007 the fastest increase in the

number of robots per million hours worked took place in the transport equipment (about 8.1),

chemical (about 3.3) and metal (about 1.7) industries.

Appendix Tables A2 and A3 reveal an uneven distribution of robot density, with more vari-

ation across industries than across countries. Appendix Table A4 further shows the skewness of

the distribution of robots across country-industry pairs, which correspond to our observations.

In 1993, the median country-industry had a negligible robot density of 0.004 robots per mil-

lion hours worked. Panel B of the table shows that the gains in robot density from 1993-2007

were again skewed, with a median of just over 0.02 and maximum of over 28. Only in ten

observations did the robot density decline over our sample period.40 Appendix Table A4 also

reports similar summary statistics for our alternative measures of robot density, and again both

the levels in 1993 and the changes until 2007 were skewed to the right.

Before presenting our regression analysis of the impact of industrial robots, we examine the

appropriate functional form. Figure 2 plots the change in the log of labor productivity from

1993-2007 against measures of increased robot use. In sub-figure (a), we plot the percentile

of the change in robot density net of country trends on the horizontal axis, as well as the fitted

regression line.41 The slope is positive and statistically significant, and the distribution of data

points around the fitted line suggests that the relationship between productivity growth and the

percentile of robot densification is well approximated by a linear functional form.42 In sub-

40Robot stocks declined in twelve observations. In eight of these robot densities also declined. In four observa-
tions the robot stock declined but the density (weakly) increased, and in two observations the density declined but
the stock (weakly) increased.

41Percentiles are based on the weighted distribution of changes in robot density, where within-country 1993
employment shares of a country-industry are used as weights.

42The use of percentiles is common in the economics literature, and they have even been extensively used in
studying labor market inequality and the impact of technological change (Autor, Levy, and Murnane, 2003). In
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figure (b), we instead plot changes in robot density on the horizontal axis (again net of country

trends), together with the fitted line. Here a linear functional form (though still positive and

significant at conventional levels) seems much less adequate, and the estimated slope appears

sensitive to a few observations near the top of the distribution of robot densification. While an

approximation of the functional form in our theoretical model might suggest using changes in

raw robot density, Figure 2 shows that using percentiles gives a much better fit. In most of the

analysis below we use the percentile of robot densification as our main regressor, although in

the robustness checks we report results using other functional forms.

In Appendix Figure A1 we examine graphically the relationship between robot density and

changes in productivity at the industry level. The figure plots simple means of the variables of

interest by industry, averaged across all the countries in our data. Sub-figure (a) of Appendix

Figure A1 suggests that industries with higher deciles of change in robot density experienced

faster growth in productivity.43

4.2 Main regression results

In our regression analysis we estimate equations of the form

∆Yci = β1 +β2 f (robotsci)+β3controlsci + εci, (3)

where ∆Yci is the change in the outcome of interest, Yci in industry i in country c from 1993-

2007, and f (robotsci) is some measure of the change in the use of robots, relative to the labor

input. Some of the specifications include controlsci, which are country fixed effects, initial

(1993) wages and capital-labor ratios, as well as changes in other inputs, and in some cases

also industry fixed effects. Since the specification is estimated in changes, the fixed effects

effectively absorb country (industry) specific trends. We estimate our regressions on 1993-2007

changes, because we are interested in long-run trends. Including intermediate years would not

the case of our study, using percentiles is helpful, because robot use—like other technology related measures (e.g.
patents and research and development)—is highly skewed, as we have discussed.

43Appendix Figure A1 also suggests that the electronics industry is a bit of an outlier with its high growth of
productivity, but our results are robust to excluding this industry.
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necessarily increase the precision of our estimates since it would lower the signal-to-noise ratio,

although for completeness we do discuss below some results using sub-periods. As discussed

in the data section, we weight all the regressions using industries’ base year shares of hours

worked within each country. We use robust standard errors, two-way clustered by both industry

and country, throughout. This is a conservative approach as it typically yields larger standard

errors than one-way clustering by either country or industry, or when not clustering at all.44

Figure 2 suggests that the relationship between productivity growth and the percentile of

the change in robot density is close to linear and not sensitive to a few influential observations,

unlike in the case of raw changes in robot density. We therefore use the percentile of the change

in most of our analysis, although we do discuss alternative functional forms below. While

the figure suggests that increases in robot density are systematically associated with increases

in labor productivity, the figure provides further clues regarding the productivity gains from

increased robot use. As Appendix Table A4 shows, the mean change in robot density was over

ten times higher in the top quartile than in the third quartile, which in turn was more than ten

times higher than the average in the second quartile. Given these large differences, our estimates

suggest that the marginal impact of increasing robot densities may be diminishing.

We now move on to document how the regression estimates change when we control for

potential confounding variables and use our instrumental variables strategies. Panel A of Table

1 presents results from estimating equation (3) accordingly. Moving from the bottom to the top

of the ranking of changes in the robot density distribution corresponds to an increase of about

0.57 in the logarithm of labor productivity once we control for country fixed effects in column

(2).45 This translates into increases in annual growth of 4.1 percentage points.46 When we also

control for initial (1993) values of log wages and the ratio of capital services to the wage bill,

the OLS estimate only increases marginally. When we further control for changes in the ratio

of capital services to the wage bill and changes in the ICT share in total capital services the

44We employ STATA’s “ivreg2” command to perform both OLS and 2SLS estimation, and to implement two-way
clustering. The command implements a correction, which adjusts for cases with few clusters (Brewer, Crossley,
and Joyce, 2013).

45For completeness the first column of the table reports estimates without controlling for country trends.
460.57 divided by 14 equals 0.041. The precise expression for calculating differences in annual growth rates is

eβ/14−1, which is well approximated by our simpler formula.
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estimated coefficient is again similar, at 0.66.47 The coefficients on changes in other capital are

shown in column (2) of Appendix Table A7, which corresponds to column (4) of Table 1. For

the capital-labor ratio, these coefficients are at best marginally statistically significant, while

they are small and statistically insignificant in the case of the ICT share. This suggests that for

the industries in our sample, robot adoption may indeed have been a more important driver of

labor productivity growth.

The pattern that we document, where robot densification is associated with increased la-

bor productivity even after controlling for country trends and other potential confounders, is

strongly suggestive. Nonetheless, we may be concerned about the interpretation of the esti-

mates for a few reasons. First, we might worry about attenuation bias due to measurement

error in the changes in robot densities. This is not a trivial concern, given our discussion above

of the data construction, and the fact that we are estimating specifications in changes, which

could worsen the signal-to-noise ratio compared to regressions on levels. Second, we might

be concerned that the estimates for labor productivity are biased because we use the change in

hours to construct both our dependent variable and the regressor of interest. Finally, we might

worry about reverse causality, where faster-growing industries invest more in increasing their

robot densities (robot suppliers may target their products to the industries they expect to grow

fastest).

To address these concerns, we use our measures of replaceable hours as well as reaching &

handling as instruments for the changes in robot density over time. Before doing so, however,

we present some suggestive evidence visually. Sub-figures (b) and (c) of Appendix Figure

A1 shows that both measures strongly predict the increase in robot intensity: as robot prices

fell—both in absolute terms and relative to wages—industries with higher initial replaceability

or more intensive use of reaching and handling increased their use of robots more than others.

Sub-figure (d) shows that both instruments are positively correlated, but there are also important

differences. For example, transport equipment and metal score highest on replaceability, while

textiles and food products score highest on reaching & handling. Sub-figures (e) and (f) show

47Since EUKLEMS data measure the entire capital stock, there is an overlap between our estimates of the robot
and capital inputs. In particular, robots are counted as non-ICT capital, although some related software may be
counted as ICT. Adding this final set of controls requires us to drop one country, Greece, from the sample.
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that industries with high replaceability and reaching & handling scores also experienced faster

increases in productivity.

Our replaceability and reaching & handling instruments are empirical counterparts to the

share of replaceable tasks in our theoretical model. The finding that they are positively related

to robot adoption is consistent with predictions from the model, reflecting both extensive and

intensive margin effects. While all industries arguably experience the same decline in the rental

price of robots, only those industries whose replaceability share (or intensity of reaching &

handling) is sufficiently large will respond to this fall.

Panel B of Table 1 reports 2SLS estimates using replaceability as an instrument for robot

densification. The estimates with country trends and the various controls are around 50 percent

larger than the OLS estimates, consistent with attenuation bias. Panel C uses our reaching &

handling instrument instead of the replaceability instrument; while this instrument is less prone

to concerns about reverse causality, it is also slightly weaker, though it still qualifies as a strong

instrument. The resulting estimates are very similar to those using the replaceability instrument.

Finally, Panel D uses both the replaceability and the reaching & handling instruments, and again

we have sufficient power, because each instrument is picking up a somewhat different part of

the variation in robot densification. Once again the estimates are similar to the two previous

sets of 2SLS estimates.48

As we discuss above, our preferred functional form uses percentiles, but in Appendix Table

A5 we present results using alternative functional forms. Panel A reports estimates using robot

density (the number of robots divided by hours worked). The OLS estimates are stable to the

inclusion of the set of controls. The 2SLS estimates are also stable, although the instrument

is not particularly strong. In Panel B we instead use the logarithm of (one plus robot density)

and again both the OLS and the 2SLS estimates are stable, and this time we have a stronger

first stage. Finally, in Panel D we use a measure of robot services normalized by the wage bill.

Once again the estimates are positive and quite stable, but this time the instrument lacks power.

The upshot from this analysis is that the positive relationship between robot densification and

48The J-statistics from over-identification tests are never below 5 percent, indicating failure to reject the null
hypothesis of instrument validity at conventional levels. However, the test relies on the assumption of homogenous
treatment effects, and should thus be interpreted with caution.
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increases in productivity are quite robust to using these alternative functional forms.

Although our control variables and instrumental variable strategies mitigate potential con-

cerns about measurement error and reverse causality, we might still worry that replaceable in-

dustries followed different trajectories even before they began to adopt robots. For instance,

replaceability by robots could be correlated with replaceability by earlier automation technolo-

gies. To mitigate such concerns, Appendix Table A6 presents falsification tests for our replace-

ability instrument. The table shows reduced-form regressions of the type:

∆Yci = δ1 +δ2replaceablei + countryc +ηci (4)

where countryc is a set of country fixed effects.

Panel A presents the reduced form estimates for our full sample (our benchmark), and as

before we see that during the fourteen year period from 1993-2007, replaceable industries and

those with high levels of reaching & handling saw increases in productivity, although the esti-

mates are not very precise. In panel B we restrict our sample to country-industries that did not

use any robots (robot “non-adopters”) in 1993. The coefficients for this sample are similar but

imprecisely estimated. At the bottom of the table, we report the p-value from tests for equality

of coefficients across the various panels. We cannot reject that the relationship between pro-

ductivity growth and the share of replaceable hours (reaching & handling) is the same in our

benchmark and in the sample of 1993 non-adopters. This suggest that it could be instructive to

estimate (4) for a sample of non-adopters and over the corresponding measurement period of

non-adoption.49

Next, in panel C of Appendix Table A6 we restrict the sample to industries that did not yet

adopt robots in 2007. This sample is small, comprising only 27 observations, so the estimates

are less precise. Nonetheless, they suggest that replaceable industries do not follow systemat-

ically different trends before they start to employ robots. For the replaceability index (though

49The fact that some country-industries did not adopt industrial robots by 1993 and some not even by 2007
suggests that these country-industries might be special, and the relationships between outcomes and replaceability
might not be the same for these observations as it would be for the rest of the sample in the absence of robots.
However, the similarities of results in panels A and B mitigate this concern.
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not for the reaching & handling index), we reject that the coefficient in the full sample is the

same as that in the sample of non-adopters.

What about the relationship between productivity growth and replaceability (reaching &

handling) during the fourteen-year period from 1979-1993? Since some country-industries

started using robots even before 1993, we would not expect the coefficient on instruments to be

zero, but given the large share of non-adopters, we expect the magnitude to be smaller. This

is exactly what we find in panel D of Appendix Table A6. However, if we restrict the sample

to country-industries not using robots during this period, we again find no relationship between

replaceability and productivity growth (panel E). In all these last three cases we reject that the

estimates are the same as our benchmark.

The findings we have presented so far establish robust positive associations between in-

creased robot use and labor productivity. The results persist when we control for potential

confounders, such as capital intensity and ICT, and for instrumenting increased robot use with

a measure of the replaceability of labor or with the use of reaching and handling tasks. We add

further controls in Appendix Tables A7 and A8.

In Appendix Table A7, we report both OLS and 2SLS specifications controlling for differ-

ences in task input across industries other than the replaceability of labor by robots. As doc-

umented by Autor, Levy, and Murnane (2003), an industry’s intensity of routine, abstract, and

manual task inputs predicts the rate at which it adopts ICT, and this would be a concern if these

other task measures are correlated with replaceability. While we have shown that our results are

robust to controlling for ICT directly, controlling instead for predictors of ICT adoption may be

preferable as it gets around the joint determination of ICT and robot use. Another task attribute

that is correlated with replaceability is offshoreability, and this is a concern because offshoring

became more prevalent during our sample period. The coefficients on robot adoption, while

reduced in magnitude, remain economically and statistically significant when including these

controls, both in the OLS and the 2SLS specifications (columns (3)-(4) and (7)-(8)).50

In Appendix Table A8 we report both OLS and 2SLS estimates using additional controls.

50Unfortunately, the reaching & handling instrument has no predictive power for robot densification when con-
trolling for other task measures.
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We begin in column (1) with our baseline set of controls, as in column (3) of Table 1. Column

(2) further controls for changes in the hour shares of middle and high skill workers. These

shares may themselves be outcomes, so it is not obvious that adding them gets us closer to

the causal effect of robots. Nonetheless, adding them mitigates concerns that the productivity

gains we find are driven by compositional changes in the workforce, a point to which we return

later. In practice, adding these controls reduces our baseline estimates by around 10 percent on

average, but our estimates remain positive and significant. The only exception is in panel C,

where the first-stage F-statistic using the reaching & handling instrument is now just above the

critical value and the 2SLS estimate is marginally significant.

Another potential concern is that even after controlling for observed levels of education, we

may be missing some other dimension of worker upgrading associated with increased robot use.

To mitigate this concern, column (3) adds changes in log wages as a control. As before, these

wages themselves may be an outcome, but our estimates for productivity remain positive and

statistically significant even after we control for changes in wages (again except for panel C).

To check whether our OLS results could be driven by unobserved differential trends across

industries, column (4) includes industry fixed effects, which allows us to control for industry-

specific trends, given that we estimate first differences. This is a demanding specification since

it may be precisely the differences in production processes between industries that are important

in explaining increased robot use. Panel A of Appendix Table A8 shows that the relationships

between productivity growth and robot densification is still positive and statistically significant,

but smaller in magnitude (it falls to 0.35, compare to 0.64 in our baseline estimate). This lower

estimate may reflect some unobserved omitted variables that we pick up only with industry fixed

effects (indeed, the OLS estimate when controlling for industry trends is virtually the same as

that when controlling for other industry-level task measures, as in column (3) of Appendix Table

A7). But it may also reflect a lower signal-to-noise ratio, since we are now discarding much

of the variation in our data. When we add further controls, the OLS estimates become a little

smaller and imprecise (columns (5)-(6) of Appendix Table A8).

We have also tried to learn what increased robot use implies for productivity using a shift-
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share instrument. To do so, we calculate for each of the 14 industries its global robot density

in 1993, and for each of 17 countries its change in aggregate robot density from 1993-2007.

We then multiplied the two measures for each of 238 country-industry cells, and computed

the percentile rank of the product (weighted by 1993 within-country employment shares). The

results (available upon request) are similar to the ones above when we add our usual set of

controls.51

Results from further robustness checks are very similar to the ones reported here, and are

available on request. The robustness checks include: controlling for prior growth in outcome

variables; using depreciation rates of 5 and 15 percent when constructing the robot stock; re-

stricting the sample to tradable industries; dropping country-industries for which baseline robot

stocks had to be imputed; dropping one industry at a time; and dropping one country at a time.

We also examine how robot densification and labor productivity changed in two sub-periods:

from 1993-2000 and from 2000-2007 (results again available on request). Our estimates are

positive for both sub-periods: the OLS estimates are somewhat larger for the second sub-period,

while the 2SLS estimates using either instrument (or both together) are somewhat larger for the

first sub-period. But in all cases we find positive estimates, and there is no clear evidence that

the relationship between robot densification and increased productivity has changed over time.

We are also interested in seeing to what extent the labor productivity gains were achieved

through increases in value added, reductions in hours worked, or both. Appendix Table A9

reports estimates of specifications similar to those we considered so far, but this time using

value added and hours as separate outcomes. Panel A of the table presents OLS results with

various controls. The results suggest that robot densification was associated with increases in

value added—the estimates are positive and similar to the productivity estimates, and are for the

most part either statistically significant or marginally so. The 2SLS estimates are also generally

positive, but imprecisely estimated.

The OLS estimates for hours worked are generally small and indistinguishable from zero,

regardless of the set of controls that we use. The 2SLS estimates are also imprecise, though they

are mostly negative. Unlike changes in total hours worked, changes in the skill composition of

51The shift-share instrument lacks power when we control for industry trends.
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hours show a more pronounced relationship with robot adoption, and we explore this in Section

4.4 below.

4.3 Magnitudes

Having presented our main estimates and examined their robustness, we next consider the im-

plications for aggregate labor productivity of our regression estimates. We consider a counter-

factual scenario in which robot densities (robots per million hours worked) in 2007 would have

remained the same as in 1993. We calculate how much lower labor productivity would have

been in this case.52 This calculation is subject to some caveats. Specifically, we do not account

for the possibility of spillovers across industries. For example, by growing faster, robot-using

industries may have taken up resources that would otherwise have been used by other industries,

leading us to overestimate the gains from increased robot use. Or, to take a different example,

the increased use of robots may have reduced the price of products sold to other industries and

used as inputs, making us underestimate the gains from increased robot densification. Another

potential limitation of this counterfactual is that without robot densification, factors may have

reallocated differently across industries over time.

To calculate counterfactual productivity, we proceed as follows. We first compute the ‘zero-

percentile’, the percentile of changes in robot density that corresponds to no change, q0. Let qci

denote the actual percentile of the change in robot density in country c and industry i. We calcu-

late the counterfactual log change of y≡ VA/H as (∆ lnyci)
c f = ∆ lnyci− β̂ (qci−q0), where β̂

is the preferred estimate of robot densification’s role in shaping productivity. Using (∆ lnyci)
c f ,

we compute the counterfactual log values and levels of productivity in 2007 for each country-

industry. We then aggregate levels of productivity to the country level, using as weights an

industry’s 2007 share in total hours in its country, obtaining Y c f
c,2007. By comparing these num-

bers to the actual 2007 levels, we obtain an estimate of how much lower productivity would

have been in the absence of robot densification. In particular, we calculate the percentage loss
52An alternative counterfactual scenario is one in which all country-industries reach the same robot density by

2007 as the country-industry with the maximum robot density in the sample. However, given that many industries
have very low shares of replaceable tasks, such a scenario does not seem plausible. In contrast, the fall in robot
prices could well have been much slower than it actually was, and industries could have stayed close to their 1993
levels of robot density—this is the scenario that we focus on.
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as 100× (1− yc f
c,2007/yc,2007).53

We base our analysis on the OLS estimates from the specifications that allow for both coun-

try and industry trends, setting β̂ = 0.35.54 Since this estimate is lower than our 2SLS estimate,

the results reported here may be viewed as conservative. The bottom row in Appendix Table

A10 shows that the counterfactual loss in labor productivity for the robot-using industries im-

plied by the OLS estimate is on average about 16 percent across countries. We calculate that

countries with more rapid robot densification would experience a larger loss in productivity in

the absence of robot densification. The loss in both productivity would have been highest for

Germany and lowest for Hungary.

What are the implications of increased robot densification for economies as a whole? As-

suming that no robots are used in the industries excluded from our sample, we obtain the loss

in economy-wide productivity by multiplying our figures for the robot-using industries by the

share in value added of the robot-using industries in 2007. This share is typically around one

third or less, and hence our estimates of losses in productivity drop substantially. Still, we find

that productivity would have been about 5.1 percent lower in the absence of robot densification.

This implies that robot densification increased annual growth of labor productivity by about

0.36 percentage points. This figure is roughly comparable to the estimated total contribution of

steam technology to British annual labor productivity growth, which was around 0.35 percent-

age points, but was sustained over a period that was about four times longer, from 1850-1910

(Crafts, 2004). The overall contribution of robots is lower than the upper range of estimates of

ICT’s contribution to EU and US labor productivity growth form 1995-2005, which O’Mahony

and Timmer (2009) estimate at 0.6 and 1.0 percentage points, respectively. However, the total

value of ICT capital services exceeds that of robot services.55

53We do not perform standard growth accounting to assess the contribution of robots, because such an exercise
requires an aggregate production function that is constant over time. But the adoption of robot technology involves
a change in the production function, as evidenced by the absence of robots in many country-industries in 1993,
and as illustrated by our model. The model also emphasizes the roles of fixed costs and monopoly rents in robot
adoption, and both features are at odds with the assumptions needed for growth accounting.

54This is taken from panel A, column (4) of Table A8.
55Averaged across countries and the years 1993 and 2007, the share of robot services in total capital services

is 0.64 percent (2.25 percent in robot-using industries), compared to 11 percent for ICT services (13 percent in
robot-using industries). However, the IFR (2012, p.11) points out that their data on the value of the robot stock “do
not include the cost of software, peripherals and systems engineering”, and that the true value of the robot stock
may be three times as large. A further difficulty in this context is that EUKLEMS data break down the capital stock
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In sum, our regression analysis suggests that the contribution of robot densification to

growth has been substantial. This finding is consistent with evidence on the returns to robot

adoption from 24 case studies provided by the Danish robot manufacturer Universal Robots,

covering a wide range of industries including pharmaceuticals, food, plastics, machine parts,

glass, and furniture. While these case studies may not be representative of all industrial robot

adoption episodes, they provide us with a rare window on the economic contributions of con-

temporary robots at the firm level. Across the 24 cases, payback times range from 2-18 months.

We explain in the Theory Appendix how payback times can be used to calculate the annual rate

of return to robot use under assumptions on the depreciation rate, service life, and the interest

rate (that is, the rate of return on an alternative, safe investment such as a risk-free bond). Let us

take the interest rate to be five percent. If we further assume, consistent with the way we con-

structed the data on robot stock, a depreciation rate of ten percent and an infinite service life,

then payback times of 2 and 18 months imply annual returns of 202 percent and 25 percent,

respectively.56 Clearly, these are large returns, and they raise the question why robots have not

been adopted more widely, and why the aggregate contribution of robots is not even larger than

what we find. One possible explanation is that many firms have few replaceable tasks. Further

constraints may include managerial resources, imperfect information, and inelastic demand at

the firm level, at least in the short run.57 While the precise impediments to robot adoption

may vary, we conclude that the limited firm-level evidence that we do have is consistent with a

substantial contribution of robots to aggregate productivity growth.

4.4 Further outcomes

We have so far discussed our main set of results, showing that robot densification increased labor

productivity. We now turn to investigating the role of robot densification for other outcomes:

into ICT and non-ICT, but robots are made of both ICT and non-ICT components (even though in the EUKLEMS
data they are included in non-ICT capital).

The contribution of robots to growth is also less than that of post-war road construction in the US, which Fernald
(1999) estimates at 1 percent for the period 1953-1973.

56If we instead assume, as does the IFR, zero depreciation and a service life of 12 years, then these payback
times imply a return of almost 600 percent and 63 percent, respectively.

57In conversations with industry representatives we learned that medium-sized manufacturing firms often enter
long-term contractual relationships with customers, and these firms may therefore find it difficult to substantially
raise sales volume in the short run.
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total factor productivity (TFP), output prices, wages, and different skill groups’ shares of hours

worked.

We begin in columns (1)-(3) of Table 2, using the change in the log of total factor produc-

tivity (TFP) as the outcome. The OLS estimates with controls suggest that robot densification

was associated with a significant increase in TFP, which is roughly two thirds as large as the

increase in labor productivity. The 2SLS estimates using the replaceability instrument, or the

reaching & handling instrument, or both, are also positive and in most cases significant (or

marginally so), and they are again roughly two-thirds as large as the equivalent estimates for

labor productivity.58

Next, in columns (4)-(6) of Table 2 we use the change in the log of output prices as our

outcome of interest. The OLS and the 2SLS estimates are all negative and in most cases statis-

tically significant, although again some of them are only marginally significant. The magnitude

of the price declines associated with robot densification is very similar to the TFP gains we

report in the previous paragraph.

The two results above suggest that most of the labor productivity gains from increased use of

industrial robots accrue to consumers. But do workers also benefit, and if so—to what extent?

In Table 3 we use the same specifications as before, but this time with the change in the log

of mean hourly wages as the outcome variable. Panel A presents the OLS estimates. Here the

estimate without country trends is close to zero, but once we add country trends the estimated

coefficient becomes positive and significant, and this pattern persists as we control for various

controls, including changes in the skill mix, capital intensity and ICT. The magnitudes are,

however, much smaller than the TFP estimates, and they are typically around 10 percent of

the labor productivity gains. The 2SLS estimates using either instrument (or both) paint a

similar picture, of gains in wages that are roughly an order of magnitude smaller than the labor

productivity gains.

But if workers seem to gain from increased use of industrial robots, are the gains shared

equally across different skill groups? Here, as Table 4 suggests, the answer seems to be negative.

In this table we report estimates of the share of hours worked by high-skilled (usually college

58Data on TFP are missing for Greece and South Korea.
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graduates), low skill (typically high school dropouts) and middle-skilled workers (those with

intermediate levels of schooling).59 The OLS and 2SLS estimates for the two higher skill groups

are typically positive and in most cases imprecise. In contrast, the OLS and 2SLS estimates for

low-skilled workers are large and negative, and in almost all cases statistically significant. These

findings suggest that there are losers, as well as winners, from the adoption of industrial robots.

Moreover, the losers (at least in relative terms) are in this case low-skilled workers.60 This

result is noteworthy given the recent findings in the literature that some technological change

is biased against middle-skilled workers (see for example the discussion of the effect of ICT in

Michaels, Natraj, and Van Reenen (2014) and more general discussions in Goos, Manning, and

Salomons (2014), Goos and Manning (2007) and Autor (2014)).

5 Conclusions

We study, for the first time, the relationship between industrial robots and economic outcomes

across much of the developed world. Using a panel of industries in 17 countries from 1993-

2007, we find that increased use of industrial robots is associated with increases in labor pro-

ductivity. We find that the contribution of increased use of robots to productivity growth is

substantial, and calculate using conservative estimates that it comes to 0.36 percentage points,

accounting for 15 percent of the aggregate economy-wide productivity growth. The pattern that

we document is robust to including various controls, for country trends, and for changes in the

composition of labor and in other capital inputs. We also find that robot densification is associ-

ated with increases in both total factor productivity and wages, and reductions in output prices.

We find no significant relationship between the increased use of industrial robots and overall

employment, although we find suggestive evidence that robots may be reducing employment of

low-skilled workers.

As of 2007 industrial robots accounted for only around 2.25 percent of the capital stock in

59Because the three shares add to one we could have reported just two of them, but reporting all three allows
readers to gauge the precision of each point estimate.

60We have also considered wage bill shares and wages by skill group as outcomes (results available on request).
As with shares in hours worked, we find negative estimates for the change in the wage bill share of low-skilled
workers, while wages do not seem to be differentially affected across skill groups.
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robot-using industries, and their use was relatively limited, even in the developed economies that

we study. If the quality-adjusted prices of robots keep falling at a rate similar to that observed

over the past decades, and as new applications are developed, there is every reason to believe

that they will continue to increase labor productivity. Recently, the development of robots

has been increasingly directed towards services. Areas that are experiencing a particularly

rapid expansion include medical robots, factory logistic systems, and unmanned aerial vehicles,

popularly known as drones (IFR 2012, p.19).

Another area where autonomous machines hold both promise and threat to jobs is self-

driving vehicles. If and when they become commercially viable, self-driving cars offer a more

convenient, more flexible, and safer mode of transportation. At the same time, they pose a threat

to the employment of drivers with few recognized qualifications, including many immigrants

from less-developed countries.

Our analysis focused (due to data limitations) on developed economies. But recent evidence

(Financial Times, 2014; International Federation of Robotics, 2014) shows that robots are in-

creasingly used also in developing countries, and China is already the world’s leading buyer

of robots. So the contribution of robots to worldwide growth in the upcoming decades may be

even larger than the one we document.

At the same time, the evidence suggests that marginal returns on increased robot densifica-

tion seem to diminish fairly rapidly. We also caution that the rise of robots is not a blessing for

all: we find that low-skilled workers in particular may lose out.
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Figure 1: The Price of Robots in Six Countries 1990-2005

(a) Not adjusted for quality changes (b) Adjusted for quality changes
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Notes: Source: International Federation of Robotics (2006, Chapter III). Nominal price indices are based on
listed prices reported by surveyed firms. See the Data Appendix for details on the construction of quality-
adjusted indices. Annual surveys on robot characteristics were not carried out for the years 1991-1998, hence
values of the quality adjusted indices for these years have been imputed by the International Federation of
Robotics. “Mean” refers to the un-weighted arithmetic average across the six countries shown. For compari-
son, nominal wages grew on average 105 percent in these six countries (139 percent on average in all countries
included in our sample).

Figure 2: Growth of Productivity and Robots 1993-2007

(a) Percentile of Change in Robot Density (b) Change in Robot Density
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Notes: Observations are country-industry cells. The size of each circle corresponds to an industry’s 1993 within-
country employment share. Fitted regression lines are shown. Measures of robot adoption are net of country
trends. In panel (a), the estimated slope is 0.57 with a robust standard error (two-way clustered by country and
industry) of 0.27. In panel (b), the estimated slope is 0.032 and the standard error is 0.016.
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Table 1: Changes in Robots Input and Growth in Productivity 1993-2007—OLS & IV Estimates

∆ ln(VA/H)
(1) (2) (3) (4)

A. OLS
Robot adoption 0.36 0.57 0.64 0.66

(0.23) (0.27) (0.22) (0.24)

B. IV: replaceable hours
Robot adoption 0.88 0.91 0.99 1.05

(0.50) (0.49) (0.39) (0.38)

F-statistic 41.8 34.2 33.9 36.8

C. IV: reaching & handling
Robot adoption 0.69 0.71 0.90 1.02

(0.56) (0.53) (0.45) (0.42)

F-statistic 30.1 25.0 16.1 19.3

D. IV: replaceable hours, reaching & handling entered jointly
Robot adoption 0.86 0.89 0.99 1.05

(0.50) (0.49) (0.39) (0.38)

F-statistic 25.4 19.3 17.4 19.7
J-statistic (p-value) 0.55 0.51 0.66 0.86

Country trends X X X
Controls X X
Changes in other capital X
Observations 238 238 238 224

Notes: Robot adoption refers to the percentile in the weighted distribution of changes in robot density, divided
by one hundred. Controls include initial (1993) values of log wages and the ratio of capital services to the wage
bill. “Changes in other capital” indicates that changes in the ratio of capital services to the wage bill and changes
in the ICT share in total capital services are controlled for. Data on the ICT share are missing for Greece in the
EUKLEMS data. Robust standard errors, two-way clustered by country and industry, in parentheses. Regres-
sions are weighted by 1993 within-country employment shares.
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Table 2: Further Outcomes—TFP and Prices

∆ ln(TFP) ∆ ln(P)
(1) (2) (3) (4) (5) (6)

A. OLS
Robot adoption 0.26 0.47 0.47 -0.38 -0.47 -0.51

(0.20) (0.19) (0.19) (0.18) (0.20) (0.21)

B. IV: replaceable hours
Robot adoption 0.62 0.79 0.79 -0.55 -0.66 -0.72

(0.40) (0.32) (0.32) (0.47) (0.35) (0.35)

F-statistic 47.7 32.7 35.0 41.8 33.9 36.8

C. IV: reaching & handling
Robot adoption 0.39 0.63 0.64 -0.40 -0.67 -0.71

(0.46) (0.37) (0.36) (0.56) (0.43) (0.38)

F-statistic 39.3 17.3 17.2 30.1 16.1 19.3

D. IV: replaceable hours, reaching & handling entered jointly
Robot adoption 0.61 0.79 0.79 -0.54 -0.66 -0.72

(0.40) (0.32) (0.32) (0.47) (0.35) (0.35)

F-statistic 29.4 17.2 19.9 25.4 17.4 19.7
J-statistic (p-value) 0.34 0.39 0.36 0.58 0.98 0.96

Country trends & controls X X X X
Changes in other capital X X
Observations 210 210 210 238 238 224

Notes: Robot adoption refers to the percentile in the weighted distribution of changes in robot density, divided
by one hundred. Controls include initial (1993) values of log wages and the ratio of capital services to the wage
bill. “Changes in other capital” indicates that changes in the ratio of capital services to the wage bill and changes
in the ICT share in total capital services are controlled for. Data on TFP are missing for Greece and South Ko-
rea, and on the ICT share, for Greece in the EUKLEMS data. Robust standard errors, two-way clustered by
country and industry, in parentheses. Regressions are weighted by 1993 within-country employment shares.
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Table 3: Further Outcomes—Hourly Wages

∆ ln(mean hourly wage)
(1) (2) (3) (4)

A. OLS
Robot adoption -0.010 0.057 0.042 0.039

(0.026) (0.013) (0.016) (0.017)

B. IV: replaceable hours
Robot adoption 0.067 0.097 0.085 0.087

(0.043) (0.023) (0.021) (0.021)

F-statistic 41.8 33.9 30.4 34.8

C. IV: reaching & handling
Robot adoption 0.075 0.142 0.119 0.118

(0.058) (0.032) (0.031) (0.031)

F-statistic 30.1 16.1 12.5 15.8

D. IV: replaceable hours, reaching & handling entered jointly
Robot adoption 0.068 0.096 0.082 0.084

(0.044) (0.023) (0.020) (0.021)

F-statistic 25.4 17.4 15.8 18.0
J-statistic (p-value) 0.81 0.05 0.08 0.13

Country trends & controls X X X
Changes in skill mix X X
Changes in other capital X
Observations 238 238 238 224

Notes: Robot adoption refers to the percentile in the weighted distribution of changes in robot density, divided
by one hundred. Controls include initial (1993) values of log wages and the ratio of capital services to the wage
bill. “Changes in skill mix” indicates that changes in the hour shares of middle and high skill workers are con-
trolled for. “Changes in other capital” indicates that changes in the ratio of capital services to the wage bill
and changes in the ICT share in total capital services are controlled for. Data on the ICT share are missing for
Greece in the EUKLEMS data. Robust standard errors, two-way clustered by country and industry, in parenthe-
ses. Regressions are weighted by 1993 within-country employment shares.
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