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ROBOTS AT WORK

Georg Graetz and Guy Michaels*

Abstract—We analyze for the first time the economic contributions of
modern industrial robots, which are flexible, versatile, and autonomous
machines. We use novel panel data on robot adoption within industries in
seventeen countries from 1993 to 2007 and new instrumental variables that
rely on robots’ comparative advantage in specific tasks. Our findings suggest
that increased robot use contributed approximately 0.36 percentage points
to annual labor productivity growth, while at the same time raising total
factor productivity and lowering output prices. Our estimates also suggest
that robots did not significantly reduce total employment, although they did
reduce low-skilled workers’ employment share.

I. Introduction

ROBOTS’ capacity for autonomous movement and their
ability to perform an expanding set of tasks have cap-

tured writers’ imaginations for almost a century.1 But more
recently, robots have emerged from the pages of science-
fiction novels into the real world, and discussions of their
possible economic effects have become ubiquitous. These
discussions reflect both high expectations and deep concerns.
There is a particularly lively debate on the implications of
recent and anticipated developments in robotics and closely
related technologies (see, e.g., Brynjolfsson & McAfee,
2014, and Autor, 2015).
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1 Discussions of automata and physical construction of working machines
go back to the ancient world. But according to the Oxford Online Dic-
tionary, the word robot comes from robota, the Czech word for forced
labor. The term was coined in Čapek’s 1920 play, Rossum’s Univer-
sal Robots (http://www.oxforddictionaries.com/definition/english/robot).
Robots gained in popularity following the work of Asimov (1950).

This growing interest reflects a profound change in robot
capabilities over the past few decades. Creating robots that
are autonomous, flexible, and versatile was a major engi-
neering challenge, but remarkable progress has been made.
Robots can now perform a fairly wide range of tasks, includ-
ing welding, painting, and packaging, with very little human
intervention. These capabilities set robots apart from earlier
waves of automation and more conventional information
and communication technologies (ICT), which left flexible
movement in three dimensions firmly in human hands. As
robots take on more tasks, many people worry that large-
scale job losses are looming. In one survey carried out in the
United Kingdom, 30% of respondents believed that their job
could be replaced by a robot in the next twenty years.2

Yet despite the widespread interest and concern, there is
relatively little evidence on the implications of increased
robot use for labor productivity, total factor productivity,
output prices, and the employment of workers with differ-
ent skills across the developed world. Our study begins to
remedy this problem by shedding light on how industrial
robots are changing the economy. To frame our analysis, we
construct a simple model of firms’ decision to adopt robots.
By paying a fixed cost of adoption, firms can employ robots
alongside workers to perform a range of tasks, whose scope
varies by industry. Declines in robot prices increase robot
adoption, which raises productivity and wages and decreases
output prices.

Our main contribution is to study industrial robots empir-
ically, using new data from the International Federation
of Robotics (IFR). The IFR measures deliveries of “mul-
tipurpose manipulating industrial robots,” based on the
definitions of the International Organization for Standard-
ization (ISO), which allow us to compare robot deliv-
ery numbers across country-industry pairs and over time.
Specifically, the IFR definition refers to a “manipulating
industrial robot as defined by ISO 8373: An automatically
controlled, reprogrammable, multipurpose manipulator pro-
grammable in three or more axes, which may be either
fixed in place or mobile for use in industrial automation

2 The survey was carried out by the British TV station Sky News.
See results and an accompanying article at http://interactive.news.sky
.com/Robots_Tabs_FULL.pdf and http://news.sky.com/story/1544448
/robot-revolution-40-percent-fear-wipeout-by-machines, respectively.
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applications” (IFR, 2012; see also the ISO definitions at
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en).3

Using data from the IFR (2006), we estimate that from
1990 to 2005, the price of industrial robots in six major
developed economies fell by approximately half. When qual-
ity improvements are taken into account, the fall in prices
was even steeper: by 2005, quality-adjusted robot prices
were about one-fifth of their 1990 level.

This rapid decline in robot prices led to increased use of
robots per human hour worked in a range of industries. We
use IFR (2012) and EUKLEMS (Timmer et al., 2007) data
to estimate robot density (the stock of robots per million
hours worked) in fourteen industries in seventeen countries
from 1993 to 2007. Averaged across the seventeen countries
in our data set, robot density increased over this period by
more than 150%, from 0.58 to 1.48. Among the countries
in our data set, robot density increased the most in Ger-
many, Denmark, and Italy. Among the industries, transport
equipment, chemicals, and metal industries led the way in
increasing robot density.

Using our panel data, we find that industry-country pairs
that saw more rapid increases in robot density from 1993 to
2007 experienced larger gains in labor productivity. These
results are robust to controlling for a range of country-
specific and industry-specific time-varying factors, as we
explain below. At the same time, our findings suggest that
larger increases in robot density translated into increas-
ingly small gains in productivity, suggesting that there are
diminishing marginal gains from increased use of robots.

In order to mitigate concerns about the possibility of
reverse causality from productivity growth to increased robot
adoption, we provide further evidence on the economic role
of robots using two new instrumental variable strategies. To
construct our first instrument, we use data on robot appli-
cations (IFR, 2012), which classify the tasks performed by
robots. We do not use information on the extent of robot use
in each of these tasks, which is likely endogenous to industry
conditions. Instead, we match these to data on U.S. occupa-
tions in 1980, before robots became ubiquitous, and define
occupations as “replaceable” if by 2012, their work could
have been replaced, completely or in part, by robots. We
then compute the fraction of each industry’s hours worked
in 1980 that was performed by occupations that subsequently
became prone to replacement by robots. We also construct
a second new instrument, which we call “reaching and han-
dling,” which builds on technological advances made in the
use of robotic arms. As we explain below, this robotic capa-
bility is largely driven by technological supply factors, not by
industries’ task requirements. To construct this instrument,
we measure the extent to which industries used occupations
requiring reaching-and-handling tasks compared to other

3 The IFR data have the advantage of using a gold standard definition
of robots, but unfortunately, these data are not available at lower levels of
disaggregation. This means that there are limits to the nature of the analysis
that we conduct here, but we nevertheless think that it is informative for the
debate on robots’ role in the world’s labor markets.

physical tasks in 1980. While neither of these instruments
solves all potential problems of omitted variables and reverse
causality, they provide additional checks on our empirical
approach.

Both our industry-level replaceability index and reach-
ing and handling strongly predict robot densification (an
increase in robot density) when robot prices fell. Two-
stage least squares (2SLS) estimates using replaceability
and reaching and handling (and both) as instruments for
robot densification show that increased use of robots raised
labor productivity, consistent with our OLS estimates. These
results are again largely unchanged when we allow for
country-specific trends in outcomes.

We acknowledge that neither instrument is perfect, since
both reflect variation across industries in the fraction of tasks
that could potentially be replaced by robots, which may be
correlated with other changes over time, so we interpret our
findings cautiously. It is nevertheless reassuring that both
instrumental variable estimates yield estimates that are sim-
ilar in magnitude. These estimates are, in turn, somewhat
larger than our OLS estimates, consistent with the presence
of measurement error in our measure of robot adoption, as
we explain in the data section.

Though the instrumental variables estimates rely on varia-
tion across industries, and therefore do not allow us to control
for industry-specific trends, we note that the OLS estimates
are robust to controlling for industry trends.4

The OLS and 2SLS results are robust to a large set of
specification checks, involving alternative measures of robot
use, controls for the changes in other inputs such as labor
of different skill levels as well as ICT and non-ICT capital,
and controls for industry-level task characteristics such as
routineness and offshoreability.

We calculate that on average across the seventeen coun-
tries in our data set, robot densification from 1993 to 2007
raised the annual growth of labor productivity by about 0.36
percentage point (compared to a mean growth of 2.4%).
These figures are conservative, since they are based on the
lower range of our estimates of the impact of robots. These
figures are also fairly similar to the estimated total contribu-
tion of steam technology to British annual labor productivity
growth of around 0.35 percentage point (Crafts, 2004) from
1850 to 1910, a period that is about four times longer than
the period we study, although robots’ contribution could well
continue for years to come. The overall contribution of robots
is lower than the upper range of estimates of ICT’s contri-
bution to EU and U.S. labor productivity growth from 1995
to 2005, which O’Mahony and Timmer (2009) estimate at
0.6 and 1.0 percentage point, respectively. But importantly,

4 We explored the possibility of interacting the instruments with country
dummies or with an indicator for being located in a country that is among the
world leaders in transport equipment. The resulting estimates, controlling
for industry trends, were similar to our main OLS and 2SLS estimates but
suffered from a lack of statistical power.
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the total value of ICT capital services is considerably larger
than that of robot services.5

To provide further evidence on industrial robots’ contri-
bution to the economy, we turn to separate data on 24 case
studies of robot adoption. The data come from the Danish
firm Universal Robots, which produces collaborative indus-
trial robots for a range of applications. These case studies
indicate that investing in robots can be highly profitable, with
repayment periods of two to eighteen months. Our calcula-
tions suggest that this reflects high rates of return, on the
order of 25% to 200% annually.

Following our investigation of robots and labor produc-
tivity, we turn our attention to studying their impact on
employment. Our preferred OLS and 2SLS estimates from
the country-industry panel of robots show no significant
implications for aggregate hours worked from robot den-
sification. When we look at the hours worked by different
skill groups, however, we find that robots appear to reduce
the share of hours worked by low-skilled workers relative to
middle-skilled and high-skilled workers. These results are
consistent with viewing robotics technology as skill biased.
At the same time, we find that unlike ICT, robots do not
polarize the labor market (at least across the sectors included
in our sample) but do appear to hurt the relative position of
low-skilled workers rather than middle-skilled ones.6

Finally, we estimate how robot densification changes other
outcomes. We find that it appears to reduce output prices,
benefiting consumers and downstream producers. It also
appears to boost total factor productivity (TFP) and average
wages.7

During the period we analyze, industrial robots were used
in just under a third of the economy (as averaged across the
countries in our data set), and service robots were still in
their infancy. This has left plenty of potential for increased
use of robots in other industries. Moreover, as new robot
capabilities are developed, they may be used more inten-
sively in the industries that are already using them. This
suggests that the contribution of robots to future economic
growth may be substantial. At the same time, our finding
of diminishing marginal gains suggests that ever increasing
robot densification is not a panacea for growth.

Our study is related to the large literature on the effects
of more conventional ICT.8 Substantial gains from ICT have
been documented at the firm level (Basker, 2012; Bloom,
Sadun, & Van Reenen, 2012; Brynjolfsson & Hitt, 2000;
Doms, Jarmin, & Klimek, 2004). At the level of industries

5 The contribution of robots to growth is also lower than that of postwar
road construction in the United States, which Fernald (1999) estimates at
1% for the period 1953 to 1973.

6 For related discussions of the effect of ICT on skill demand, see Michaels,
Natraj, and Van Reenen (2014) and Autor (2014).

7 We do not, however, find any significant implications of robot densifi-
cation for changes in the labor share (results available on request).

8 There is some overlap between ICT (software, computing, and com-
munications equipment) and robots, since the latter typically feature com-
puting equipment for programming and control. But most of the hardware
components of robots are not considered ICT.

or countries, it appeared initially to be difficult to detect
the impact of ICT (Solow, 1987). Stiroh (2002) presents
evidence that ICT production and use are associated with
faster productivity growth in U.S. industries, and O’Mahony
and Timmer (2009) estimate the contribution of ICT to EU
and U.S. aggregate labor productivity growth from 1995 to
2005 at 0.6 and 1.0 percentage point, respectively, applying
standard growth accounting. But recent work on the United
States finds that gains in productivity are concentrated
in ICT-producing industries, not in ICT-using industries
(Acemoglu et al., 2014). At the same time, the macro litera-
ture has been concerned with the possibility that productivity
gains from technology in general may have slowed down.
Gordon (2012) expresses a particularly pessimistic view,
and there are broader worries about secular macroeconomic
stagnation (Summers, 2014; Krugman, 2014), although oth-
ers remain more optimistic (Brynjolfsson & McAfee, 2014).
None of these works, however, provides direct evidence on
the productivity of robots. Against this backdrop, our study
provides a systematic evaluation of industrial robots and their
contributions to productivity growth, which we estimate
using variation over time across countries and industries.

There is also a literature about earlier waves of automa-
tion, including Dunne (1994), Doms, Dunne, and Troske
(1997), Bartelsman, Leeuwen, and Nieuwenhuijsen (1998),
Bartel, Ichniowski, and Shaw (2007), and Hunt and Hunt
(1983). Our study looks at a later period, when the capabili-
ties of robots to perform productive tasks in a cost-effective
way improved dramatically, as we explain below. Moreover,
our study covers a larger set of countries than most of these
preceding papers.9

In addition to studying robots’ relationship to produc-
tivity, we also shed light on the concerns that they might
have a negative effect on employment. Fears that technolog-
ical innovations destroy jobs are not new, and the Luddites’
destruction of machines during the early nineteenth century
is a striking example (Hobsbawm, 1952). A growing litera-
ture has studied the effects on labor demand of ICT in general
but not of robots.10 Brynjolfsson and McAfee (2014), Ford
(2009), and Frey and Osborne (2017) argue that in the future,
robots will likely replace many existing jobs. These concerns
have been exacerbated by the evidence that labor’s share of
national income has been falling (Karabarbounis & Neiman,
2014; Elsby, Hobijn, & Sahin, 2013). At the same time, dis-
agreements about the potential effects of robots on the labor
market are common even among experts in the field (Pew

9 One recent exception is independent research on robots (Kromann,
Skaksen, & Sorensen, 2012). Unlike that study, ours makes a more system-
atic effort to identify plausibly exogenous variation in robot use in order to
separate it from potential confounders.

10 For evidence on the labor market effects of ICT, see, for example, Autor,
Katz, and Krueger (1998), Autor, Levy, and Murnane (2003), Acemoglu and
Autor (2011), Michaels et al. (2014), Goos, Manning, and Salomons (2014),
and Akerman, Gaarder, and Mogstad (2015). A growing literature analyzes
theoretically the impact of increased automation on the economy (Hemous
& Olsen, 2014; Feng & Graetz, 2015; Acemoglu & Restrepo, 2016) but
does not provide empirical evidence on the impact of robots.
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Research Center, 2014). Our study contributes to this litera-
ture by evaluating the impact of robots on hours worked in
industries that employ them across the developed world.

In a recent paper, Acemoglu and Restrepo (2017) build
on our use of IFR data on robots but restrict their atten-
tion to geographic variation within the United States. Unlike
their paper, we use data on actual robot use within coun-
tries (by industries), whereas the IFR data do not measure
actual robot use by subnational geography. While we report
first-stage regressions and compare OLS with 2SLS esti-
mates, such exercises are impossible when using the IFR
data within countries. Our study also spans countries that
use robots more intensively. In 2007, robot density in the
United States was marginally lower than the mean across
the seventeen countries in our study and more than three
times lower than in Germany, which is covered in our study.
Our main outcome of interest (productivity) is also differ-
ent from theirs (employment), and whereas they argue that
robots reduce overall employment, we find a significant neg-
ative implications of robots only for the employment of
low-skilled workers. Nevertheless, as another recent paper
of ours (Graetz & Michaels, 2017) suggests, our results
may still be compatible with theirs if the effects of new
technologies such as robots are different in the United States.

The remainder of our paper proceeds as follows. Section
II presents a model of robot adoption. Section III describes
our data. Section IV contains our empirical analysis. Section
V concludes.

II. Adopting Robots in Production:
A Model of Technology Choice

To guide our empirical analysis, we develop a simple
model of firms’ decisions to adopt robot technology and
use robots in production. The model describes the condi-
tions for the adoption of robots alongside human workers
and characterizes how a decline in robot prices affects labor
productivity, employment, output, and product prices.

Consider an economy featuring a continuum of industries
indexed by i, and within each industry a continuum of vari-
eties indexed by j. Preferences are described by a two-tier
nested constant elasticity of substitution (CES) utility func-

tion, U =
(∫ 1

0 C(i)
ε−1
ε di

) ε
ε−1

, C(i) =
(∫ 1

0 C(i, j)
η−1
η dj

) η
η−1

,
where ε and η are the across- and within-industry substi-
tution elasticities. We assume throughout that η > 1 and
η > ε.11 There is a unit measure of consumers, each supply-
ing L units of labor inelastically. Consumers own all other

11 The assumption that η > 1 means that goods within the same indus-
tries are gross substitutes for each other. The assumption η > ε, means, for
instance, that the relative quantity of two different types of cars that con-
sumers demand increases by more in response to a fall in the relative price
of these types of cars than the relative quantity of food and cars increases
in response to a fall in the price of food relative to cars. For simplicity, we
assume that all industries and each variety within an industry are equally
important for consumers’ utility.

factors of production and all firms in the economy. Con-
sumers are identical in all respects, including tastes, labor
productivity, and ownership of assets.12

Within each industry, there is a unit mass of monopolisti-
cally competitive firms, and each variety is produced by one
such firm. Production technologies are constant across vari-
eties. Output Y(i, j) in industry i and firm j is produced by
combining the outputs Y(i, j, τi) from an industry-specific
continuum of tasks, indexed by τi, via a CES production

function Y(i, j) =
(∫ 1

0 Y(i, j, τi)
σ−1
σ dτi

) σ
σ−1

, where σ is the
elasticity of substitution between tasks.

We assume that people can perform all the relevant tasks,
while robots can perform only a strict subset of these tasks.
Firms that employ robots in any task incur a fixed cost of ϕ

units of labor. This means that there is a choice of technology
between one that uses both robots and labor and one that
uses only labor. We assume that robots can be used only
in a limited set of tasks, whose share in industry i is given
by α(i). As we discuss, industries differ in the share of tasks
that robots can perform. In the empirical part, we proxy these
differences, which predate the widespread use of robots, by
the prevalence of tasks that correspond to the IFR’s list of
robot applications and by the prevalence of reaching-and-
handling tasks. In the model, we allow α(i) to range from 0
to α ∈ (0, 1), and as a normalization, we assume α′(i) > 0,
so that i indexes industries’ replaceability.13

Subject to the constraints above, robots can be hired at an
exogenous rental rate of ρ.14 Labor earns a nominal wage
w and is perfectly mobile across industries and uses. We
choose labor as the numeraire good in our model, so that
w = 1 and all prices are expressed in terms of wage units.15

We assume that in tasks that can be performed by robots,
robots and workers are perfect substitutes, Y(i, j, τi) =
R(i, j, τi) + L(i, j, τi), capturing robots’ ability to perform
certain production processes autonomously. R(i, j, τi) and
L(i, j, τi) are the quantity of robots and labor hired, respec-
tively. If robot use is infeasible, Y(i, j, τi) = L(i, j, τi).16 We

12 In the empirical part, we also investigate how robots affect the employ-
ment and earnings of different skill groups. However, we prefer to keep labor
homogeneous in our model, since the main focus of the paper is how robots
affect labor productivity, output, prices, and total sectoral employment.

13 α represents the maximum share of tasks in any sector that can be
performed by robots. We assume that this share is less than 1, since (for
now at least) some human intervention is always required.

14 This means that robots are supplied perfectly elastically. This simpli-
fying assumption is common in papers on technological change that is
specific to equipment capital—for instance, Greenwood, Hercowitz, and
Krusell (1997) and Autor et al. (2003)—and it can be justified that the final
good can be converted into robots at a fixed rate.

15 One of the outcomes we consider in the empirical part is the real wage. In
the model, the real wage can be defined as the inverse of the economy-wide
price level.

16 We could also include nonrobot capital and assume that
Y(i, j, τi) = K(i, j, τi)

β
[
R(i, j, τi) + L(i, j, τi)

]1−β
and Y(i, j, τi) = K(i, j,

τi)
βL(i, j, τi)

1−β, where K(i, j, τi) is the amount of nonrobot capital
employed in each task. This would not affect any of our results. One may
argue that this Cobb-Douglas formulation, while appropriate for structures
capital, would still not capture the role of nonrobot equipment capital
such as computers, or information and communication technology (ICT)
in general. Indeed, the model would need to feature worker heterogeneity
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assume throughout that ρ < 1. This means that conditional
on using any robots, firms employ them in all replaceable
tasks and in equal amounts in each task due to our simpli-
fying symmetry assumptions. Labor is employed in equal
amounts in the remaining tasks. Therefore, we can express
Y(i, j) in terms of the amounts of robots and labor hired,
conditional on technology choice,

Y(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y N(i, j) = L(i, j) nonrobot using,

Y R(i, j) =
(
α(i)

1
σ R(i, j)

σ−1
σ

+(1 − α(i))
1
σ L(i, j)

σ−1
σ

) σ
σ−1

robot using.

(1)

The marginal cost χ(i, j), conditional on technology
choice, is

χ(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

χN(i) = 1 nonrobot using,

χR(i) = (
α(i)ρ1−σ

+1 − α(i)
) 1

1−σ robot using.

(2)

Also, when using robots, cost minimization implies an
optimal robots-to-labor ratio R(i, j)

L(i, j) = α(i)
1−α(i)ρ

−σ.
Firms’ technology choice is simple: adopt robots when

profits from doing so exceed profits from using the labor-
only technology by at least the fixed cost of using robots,
ϕ. We show in the online theory appendix that robots are
adopted only in sectors whose share of replaceable tasks
(weakly) exceeds a critical value. A fall in the fixed cost of
robot adoption or in the rental price leads to a decrease in
this critical value.17 The intensive margin of robot use is not
affected by the fixed cost of robot use but by the robot rental
rate ρ: a fall in this rate increases the optimal robots-to-labor
ratio, and this increase is larger in industries with a higher
share of replaceable tasks. Thus, the model’s implications
motivate our empirical strategy of instrumenting increased
robot use with an industry’s share of replaceable hours or
the relative prevalence of reaching and handling.

While the discussion thus far has focused on the determi-
nants of robot use and on the motivation of our instrumental
variables strategies, we now turn to the model’s predictions
for the effects of increased robot use. The constant-returns-
to-scale property of the production function, equation (1),
implies that output per worker depends only on the robot-
to-labor ratio, which is decreasing in the rental rate. Hence,

and a richer task framework to do ICT justice, given the large literature
documenting its skill and task bias (Acemoglu & Autor, 2011). An
important difference between robots and ICT is that robots take over entire
production processes completely, whereas ICT substitutes for human labor
more partially, and direct interactions between computers and workers
remain critical in production. Since ICT is not the focus of our paper, we
prefer this simpler setup, which in our view still captures the main aspects
of robot adoption.

17 If an industry uses robots, there are two possibilities: either all firms
within the industry use robots, or only a fraction of firms do. In the latter
case, firms within the industry are indifferent between the two technologies.

a fall in the rental rate ρ leads to a rise in labor productiv-
ity in robot-using industries. For the final two results, we
focus on industries in which the share of robot-using firms
within an industry equals either 0 or 1 (this is for the sake of
tractability). Given consumer demand, markup pricing, and
the fact that χR(i) is increasing in ρ, the model predicts that
a fall in the rental rate ρ reduces (increases) the robot-using
industries’ price (output) relative to that of other industries.

Finally, the model predicts how employment changes
when robots become cheaper. As we prove in the theory
appendix, a fall in the rental rate ρ leads to a rise (a fall, no
change) in the robot-using industries’ employment relative
to that of the others if and only if ε > σ (ε < σ, ε = σ). The
intuition for this result may be stated as follows. A decline
in robot prices induces firms to substitute robots for labor,
but also to reduce their relative output price. Consumers, in
turn, buy relatively more of the robot-using industries’ out-
put. Whether the increased output is met by the increase in
the robot input or whether an inflow of workers is required
depends on whether firms’ response to the fall in the price
of robots is stronger than that of consumers to the fall in the
relative output price, as measured by σ and ε.18

To sum up, our model suggests that increases in robot
density caused by a fall in the price of robots should lead
to a fall in output prices and a rise in output and labor
productivity, while the effect on hours worked is ambigu-
ous. Moreover, industries with a higher share of replaceable
hours will be more likely to adopt robots early and will
increase robot density more, providing motivation for our
instrumental variables strategy.19

III. Data Description

Our main source of data on robots is the IFR (2012),
which compiles data on industrial robots from national
federations of robot manufacturers. The IFR measures deliv-
eries of “multipurpose manipulating industrial robots” based
on the definitions of the International Organization for
Standardization. Their definition refers to a “manipulating
industrial robot as defined by ISO 8373: An automatically
controlled, reprogrammable, multipurpose manipulator pro-
grammable in three or more axes, which may be either
fixed in place or mobile for use in industrial automa-
tion applications” (IFR, 2012, see also ISO definitions
at https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en).
Each element of the definition is essential for a machine to
be considered an industrial robot. For instance, a manipula-
tor that is not reprogrammable or has a single purpose is not
considered an industrial robot.

18 We also investigated the effects of a rise in the replaceability share α(i)
in a single industry. These effects are qualitatively identical to those of a
fall in ρ described here.

19 While not modeled here, increased robot use could also facilitate higher
product quality or variety, or both, and this could positively affect product
demand and employment.
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Typical applications of industrial robots include assem-
bling, dispensing, handling, processing (e.g., cutting), and
welding, all of which are prevalent in manufacturing indus-
tries, as well as harvesting (in agriculture) and inspecting of
equipment and structures (common in power plants).20

The IFR provides data on the number of robots delivered
to each industry, in each country and year.21 We construct
the stock of robots based on deliveries using the perpetual
inventory method, assuming a depreciation rate of 10%.22

This approach is similar to the EUKLEMS procedure for
computing the stock of ICT capital. We set the initial (1993)
value of our stock measure equal to the corresponding
estimate of the robot stock provided by the IFR.23 In addition
to the quantity of robots employed, we also attempt to mea-
sure “robot services” using turnover-based prices. Because
of the high level of aggregation of the price data, we consider
the quantity measure more reliable. We report robustness
checks using robot services.24

Our second major source of data for this paper is
EUKLEMS (Timmer et al., 2007). These data include infor-
mation on inputs (including breakdowns of capital and labor
aggregates), outputs, and prices at the industry-country-year
level. We use data from the EUKLEMS March 2011 update
for value added, hours worked, capital and labor compensa-
tion, and breakdown of the capital input, and the EUKLEMS
March 2008 release for the breakdown of the labor input.
IFR and EUKLEMS data use different industry classifica-
tions at varying levels of aggregation. The most detailed
breakdown of EUKLEMS industries that allows us to consis-
tently match the IFR data is shown in appendix table A1. Of
the 28 EUKLEMS industries, we are able to match fourteen.
These include all manufacturing industries (except “machin-
ery, not elsewhere classified”), as well as agriculture, mining,
utilities, construction, and “education and R&D.” The IFR
industries we do not use are “all other manufacturing,” “all
other nonmanufacturing,” and “unspecified.” This means we
lose about 16% of deliveries on average, mainly accounted
for by the “unspecified” category.

The first year for most of our analysis is 1993, the first
year covered in the IFR data, and the last year we use is

20 Besides industrial robots, the IFR also started reporting on service robots
in 2002. However, service robots were then still in their infancy, and the
IFR does not provide country-industry-level data on service robots during
the period we analyze.

21 The IFR aims to capture the universe of robot suppliers: “The statistical
data collected in the present World Robotics are based on consolidated data
provided by nearly all industrial robot suppliers world-wide” (IFR, 2012,
p. 19).

22 We explore different depreciation rates ranging from 5% to 15% and
find that our results are robust (results available on request).

23 The IFR’s estimates of robot stocks are based on the assumption that
the service life of a robot is exactly twelve years. While we prefer to use a
measure of the robot stock that is based on more conventional assumptions
about depreciation, we must rely on the IFR estimates to initialize our series
of robot stocks.

24 For a number of countries, the IFR data do not break down deliveries
by industry in early years, so we need to impute base-year robot stocks for
these countries. See the data appendix for details. Our estimates are largely
unchanged when we exclude the countries with imputed base-year stocks
(results are available on request).

2007.25 The IFR data end only in 2011, but coverage in the
EUKLEMS data becomes uneven after 2007. Furthermore,
a virtue of omitting post-2007 data from the analysis is that
our results are not influenced by the large cyclical fluctua-
tions of the Great Recession and the subsequent recovery.
The countries included in our sample are shown in appendix
table A2.26

Nominal variables such as value added at current prices
or compensation of labor and capital are reported in units
of local currency in the EUKLEMS data. When compar-
ing these variables across countries, we convert them to
U.S. dollars using annual nominal exchange rates from the
Penn World Table, Version 8.0 (Feenstra, Inklaar, & Timmer,
2013). We measure real variables in 2005 U.S. dollars.

All the descriptive statistics and estimates that we report,
unless noted otherwise, are weighted by an industry’s ini-
tial (1993) share of hours in the country-wide total of hours
worked. We do this to ensure that our estimates reflect the rel-
ative importance of industries within countries. However, we
give equal weight to each country. Our weighting procedure
is the same as that of Michaels et al. (2014).

Our main dependent variable is the growth in labor pro-
ductivity, computed using changes in value added and hours
worked. More precisely, for each country-industry cell, we
compute the log difference of both real value added and
hours between 1993 and 2007. We define labor productivity
as the ratio of real value added to hours worked, and hence
its growth is equal to the difference between the growth
in value added and the growth in hours. We also consider
as outcomes the growth of output prices, TFP, and average
wages; changes in the labor share; as well as changes in the
share of hours worked by three different skill groups: high,
middle, and low. High-skilled workers include those with
a college degree and above. While there is some variation
across countries owing to differences in educational systems,
the group of middle-skilled workers usually consists of high
school graduates, people with some college education, and
those with nonacademic professional degrees (Timmer et al.,
2007).

The main regressor in our empirical analysis is based on
our measure of robot density, which we define as the number
of robots per million hours worked.27 We refer to changes

25 We use EUKLEMS data going back to 1979 for a falsification exercise,
but for the most part, our analysis is focused on 1993 to 2007. While the
vast majority of variables are nonmissing in 1993 and 2007 for all countries
and industries, there are some exceptions. For instance, the breakdown of
the labor input ends in 2005. In such cases, we use information closest to
the relevant year. See the data appendix for details.

26 The major robot-using countries covered in the IFR data but dropped
from our sample include China and Japan. While China is absent from
the EUKLEMS data, basic variables such as output and hours worked can
be found in World KLEMS (Wu, 2012). However, these data start only
in 1999, which is much later than the starting date of our analysis. We
drop Japan because the reported deliveries and stocks feature changes over
time that are due to substantial reclassification of the machines classified
as “robots” for the purpose of inclusion in the data, as we learned from
personal communication with the IFR.

27 In this definition, we largely follow the IFR, except that the IFR defines
robot density as the ratio of the number of robots to workers. We prefer to
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in robot density over time as “robot densification” or sim-
ply “robot adoption.” As we discuss further below, changes
in robot density are mostly small and positive (or 0), but
the distribution has a long right tail. This makes fitting a
linear model using raw changes in density challenging. In
our main analysis, we therefore use as regressor the per-
centile of changes (based on the weighted distribution of
changes). We verify that our results are robust to a range of
alternative functional forms.28

Our first instrument for robot densification is an industry-
level measure that we call replaceability.29 We construct this
instrument using data from IFR on robot applications, the
U.S. Census occupational classifications, and the distribution
of hours across occupations and industries from the 1980
U.S. Census (Ruggles et al., 2010). The IFR distinguishes
between different applications of robots, including (among
others) welding, painting, and assembling (IFR, 2012). We
take the 2000 Census three-digit occupational classification
and assign a replaceability value of 1 to an occupation if
its title corresponds to at least one of the IFR application
categories and 0 otherwise.30 We then map our replaceability
measure into the 1990 Census occupational classification,
which is available for the 1980 and 2000 Censuses. If several
2000 occupations map into one 1990 occupation, then we
assign the 1990 occupation a replaceability value of 1 if and
only if at least one of the corresponding 2000 occupations
has a value of 1.

Our second instrumental variable is a measure of how
prevalent the reaching and handling tasks were in each
industry, relative to other physical demands, prior to robot
adoption. This instrument harnesses one of the salient fea-
tures of robot adoption during our period of analysis: the
widespread use of robotic arms. For example, in discussing
the types of industrial robots by mechanical structure (and
not by application), IFR (2012) lists five types: Carte-
sian, SCARA, articulated, parallel, and cylindrical. Three
of these five types (Cartesian, articulated, and parallel) are
defined as having arms. Therefore, it seems likely that
robotic arms are a technological characteristic of robots that
comes from the supply side and is not driven by demand-
side factors that may reflect reverse causality. The Revised

use hours to normalize the number of robots, since workers can differ in the
number of hours that they work.

28 We acknowledge limitations to the use of percentiles in quantifying
our estimates, but we think that this use is justifiable given our analysis of
the functional form relationship between robot use and productivity, as we
discuss below. In section IVC, we also report our attempt to translate our
regression estimates into evidence on the magnitude of robots’ economic
impact.

29 Though the question and context differ, our instrument shares with Rajan
and Zingales (1998) the approach of identifying which sectors are most
exposed to a particular change and using this to learn about the consequences
of that change.

30 We also considered using older Census occupational classifications to
construct our instrument. Given the changes in occupational terminology
over time, we found that the matching of occupation names and robot
applications works much better when using a classification that is more
contemporaneous with the IFR report.

Fourth Edition of the Dictionary of Occupational Titles (U.S.
Department of Labor, 1991) indicates whether a physical
demand occurs never, occasionally, often, or constantly in
a given (human) occupation.31 For each physical demand
k, we create a dummy variable Dk indicating whether the
demand is present (not coded as never occurring). We then
compute the relative prevalence of reaching and handling as
(Dhandling +Dreaching)/

∑
k Dk separately for each occupation.

To measure replaceability and reaching and handling at the
industry level, we first assign these variables to each individ-
ual in the 1980 IPUMS Census based on their reported 1990
occupation. Next, we assign to each individual one of our
28 EUKLEMS industries based on a crosswalk to the 1990
Census industry classification. We compute the fraction of
replaceable hours for each of the fourteen robot-using indus-
tries by dividing the sum product of replaceability and annual
hours worked by the total sum of hours worked (applying
person weights when computing both the numerator and the
denominator). The replaceability values represent an upper
bound to the share of hours that is replaceable because occu-
pations are classified as replaceable if even part of their work
can be replaced by robots, and this part need not be large. We
compute the intensity of reaching and handling at the indus-
try level by averaging that variable across individuals in the
1980 Census (applying person weights). In addition to the
measures that we construct ourselves, we use industry-level
task variables (abstract, routine, manual, and offshoreability)
following Autor and Dorn (2013).

Finally, to provide evidence on robots’ productivity at the
micro level, we use data on 24 case studies from the Danish
robot manufacturer Universal Robots.32 These case studies
include the adoption of lightweight collaborative robots in a
wide range of industries, including pharmaceuticals, food,
plastics, machine parts, glass, and furniture. Admittedly,
these case studies may not be representative of all indus-
trial robot adoption episodes, but they complement our main
data set by providing us with a rare window on the economic
consequences of using contemporary robots at the firm level.

IV. Empirical Analysis

In section III, we described the construction of our data
containing information on labor productivity, labor and cap-
ital inputs, and, critically, robot use for 238 country-industry
pairs between 1993 and 2007. We now turn to the empirical
analysis. We first document the increased use of industrial
robots across countries and industries and present our data
graphically in section IVA. Next, we describe the results
on the impact of robots on productivity from our preferred
OLS and 2SLS specifications in section IVB. We evaluate

31 The physical demands are strength, climbing, balancing, stooping,
kneeling, crouching, crawling, reaching, handling, fingering, feeling, talk-
ing, hearing, tasting/smelling, near acuity, far acuity, depth perception,
accommodation, color vision, and field of vision.

32 We accessed these case studies on March 29, 2016, at
http://www.universal-robots.com/case-stories/#.
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Figure 1.—The Price of Robots in Six Countries, 1990–2005

Nominal price indices are based on listed prices reported by surveyed firms. See the data appendix for details on the construction of quality-adjusted indices. Annual surveys on robot characteristics were not carried
out for the years 1991 to 1998; hence, values of the quality-adjusted indices for these years have been imputed by the International Federation of Robotics. “Mean” refers to the unweighted arithmetic average across
the six countries shown. For comparison, nominal wages grew on average 105% in these six countries (139% on average in all countries included in our sample).
Source: International Federation of Robotics (2006).

the economic importance of robots by quantifying their con-
tribution to aggregate growth in section IVC. Finally, we
present results for additional outcome variables, such as TFP
and wage growth, and the shares of hours worked by different
skill groups, in section IVD.

A. Descriptive Evidence

We begin our empirical analysis by describing the use of
robots in the seventeen countries we analyze. These include
the United States, fourteen European countries, South Korea,
and Australia. As panel A of appendix table A2 shows, in
1993, the average robot density (robots per million hours
worked) in our sample was 0.58. Robot densities, in robots
per million hours worked, were highest in Germany (about
1.7), followed by Sweden (about 1.4), Belgium (1.2), and
Italy (about 1.1). The figure for the United States was just
above two-thirds of the seventeen-country average. Four of
the seventeen countries (Australia, Greece, Hungary, and
Ireland) had either no industrial robots or almost none.33

Panel B of appendix table A2 reports mean changes by
country in robot densities from 1993 to 2007. The lead-
ing country was again Germany (about 2.7), followed by
Denmark (about 1.6) and Italy (about 1.4). By 2007 indus-
trial robots were employed in all seventeen countries in our
sample. The most striking fact from appendix table A2 is
that from 1993 to 2007, mean robot density across the sev-
enteen countries that we analyzed increased by more than
150%.

33 For most countries, a fraction of robot deliveries (typically less than
20%) is always classified as “unspecified” and thus is not part of our anal-
ysis. This means that we underestimate true robot densities. The fraction
of “unspecified” deliveries is particularly large even in 2007 for Australia
(82%) and Ireland (56%). These countries belong to the group for which
we need to impute baseline robot stocks, and we show our results are robust
to excluding this group.

The most natural explanation for this rapid increase in
robot intensity is the dramatic fall in robot prices. The
IFR (2006) collects list prices of robots reported by sur-
veyed companies in selected countries. Figure 1a shows that
from 1990 to 2005, the price of robots in the six coun-
tries for which we have aggregate annual price data (United
States, France, Germany, Italy, Sweden, and United King-
dom) roughly halved.34 Even this impressive fall, however,
does not reflect the full change in robot prices. Figure 1b
shows that on average across the six countries in our sam-
ple, quality-adjusted robot prices fell by almost 80%. Even if
we restrict our attention to 1993 to 2005, the average decline
in quality-adjusted robot prices was still around 50%.

In light of this rapid fall in robot prices, it is unsurprising
that robots were widely adopted across both countries but
also industries. Appendix table A3 reports the means for
the same variables as appendix table A2, except this time
for each of the fourteen industries in our data set. In 1993
the transport equipment and metal industries led in the use
of robots, with about 5.4 and 2.4 robots per million hours
worked, respectively, while construction, education, mining,
and utilities had negligible robot densities. From 1993 to
2007, the fastest increase in the number of robots per million
hours worked took place in the transport equipment (about
8.1), chemical (about 3.3), and metal (about 1.7) industries.

Appendix tables A2 and A3 reveal an uneven distribution
of robot density, with more variation across industries than
across countries. Appendix table A4 further shows the skew-
ness of the distribution of robots across country-industry
pairs, which correspond to our observations. In 1993, the
median country-industry had a negligible robot density of
0.004 robots per million hours worked. Panel B of the table
shows that the gains in robot density from 1993 to 2007 were

34 As we discuss in section III, for reasons of data availability, we use a
turnover-based measure of prices rather than the list-based one in parts of
our analysis.
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Figure 2.—Growth of Productivity and Robots, 1993–2007

Observations are country-industry cells. The size of each circle corresponds to each industry’s 1993 within-country employment share. Fitted regression lines are shown. Measures of robot adoption are net of country
trends. (a) The estimated slope is 0.57 with a robust standard error (two-way clustered by country and industry) of 0.27. (b) The estimated slope is 0.032, and the standard error is 0.016.

again skewed, with a median of just over 0.02 and maximum
of over 28. Only in ten observations did the robot density
decline over our sample period.35 Appendix table A4 also
reports similar summary statistics for our alternative mea-
sures of robot density, and again both the levels in 1993 and
the changes until 2007 were skewed to the right.

Before presenting our regression analysis of the impact
of industrial robots, we examine the appropriate functional
form. Figure 2 plots the change in the log of labor productiv-
ity from 1993 to 2007 against measures of increased robot
use. In figure 2a, we plot the percentile of the change in
robot density net of country trends on the horizontal axis, as
well as the fitted regression line.36 The slope is positive and
statistically significant, and the distribution of data points
around the fitted line suggests that the relationship between
productivity growth and the percentile of robot densification
is well approximated by a linear functional form.37 In figure
2b, we instead plot changes in robot density on the hori-
zontal axis (again net of country trends), together with the
fitted line. Here, a linear functional form (though still posi-
tive and significant at conventional levels) seems much less
adequate, and the estimated slope appears sensitive to a few
observations near the top of the distribution of robot densi-
fication. While an approximation of the functional form in
our theoretical model might suggest using changes in raw
robot density, figure 2 shows that using percentiles gives a

35 Robot stocks declined in twelve observations. In eight of these, robot
densities also declined. In four observations, the robot stock declined, but the
density (weakly) increased, and in two observations, the density declined,
but the stock (weakly) increased.

36 Percentiles are based on the weighted distribution of changes in robot
density, where within-country 1993 employment shares of a country-
industry are used as weights.

37 The use of percentiles is common in the economics literature, and they
have even been extensively used in studying labor market inequality and the
impact of technological change (Autor et al., 2003). In the case of our study,
using percentiles is helpful, because robot use, like other technology-related
measures (e.g., patents and research and development), is highly skewed,
as we have discussed.

much better fit. In most of the analysis that follows, we use
the percentile of robot densification as our main regressor,
although in the robustness checks, we report results using
other functional forms.

In appendix figure A1, we examine graphically the rela-
tionship between robot density and changes in productivity at
the industry level. The figure plots simple means of the vari-
ables of interest by industry, averaged across all the countries
in our data. Figure A1a suggests that industries with higher
deciles of change in robot density experienced faster growth
in productivity.38

B. Main Regression Results

In our regression analysis, we estimate equations of the
form

ΔYci = β1 + β2f (robotsci) + β3controlsci + εci, (3)

where ΔYci is the change in the outcome of interest, Yci in
industry i in country c from 1993 to 2007, and f (robotsci) is
some measure of the change in the use of robots, relative to
the labor input. Some of the specifications include controlsci,
which are country fixed effects, initial (1993) wages, and
capital-labor ratios, as well as changes in other inputs, and
in some cases also industry fixed effects. Since the specifi-
cation is estimated in changes, the fixed effects effectively
absorb country- (industry-) specific trends. We estimate our
regressions on 1993–2007 changes because we are inter-
ested in long-run trends. Including intermediate years would
not necessarily increase the precision of our estimates since
it would lower the signal-to-noise ratio, although for com-
pleteness, we do discuss some results using subperiods. As
discussed in section III, we weight all the regressions using

38 Appendix figure A1 also suggests that the electronics industry is a bit
of an outlier with its high growth of productivity, but our results are robust
to excluding this industry.
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Table 1.—Changes in Robots Input and Growth in Productivity,

1993–2007: OLS and IV Estimates

Δ ln(VA/H)

(1) (2) (3) (4)

A. OLS
Robot adoption 0.36 0.57 0.64 0.66

(0.23) (0.27) (0.22) (0.24)

B. IV: Replaceable hours
Robot adoption 0.88 0.91 0.99 1.05

(0.50) (0.49) (0.39) (0.38)

F-statistic 41.8 34.2 33.9 36.8
C. IV: Reaching and handling

Robot adoption 0.69 0.71 0.90 1.02
(0.56) (0.53) (0.45) (0.42)

F-statistic 30.1 25.0 16.1 19.3
Country trends � � �
Controls � �
Changes in other capital �
Observations 238 238 238 224

“Robot adoption” refers to the percentile in the weighted distribution of changes in robot density, divided
by one hundred. “Controls” includes initial (1993) values of log wages and the ratio of capital services
to the wage bill. “Changes in other capital” indicates that changes in the ratio of capital services to the
wage bill and changes in the ICT share in total capital services are controlled for. Data on the ICT share
are missing for Greece in the EUKLEMS data. Robust standard errors, two-way clustered by country and
industry, are in parentheses. Regressions are weighted by 1993 within-country employment shares.

industries’ base year shares of hours worked within each
country. We use robust standard errors, two-way clustered
by both industry and country, throughout. This is a conserva-
tive approach as it typically yields larger standard errors than
one-way clustering by either country or industry or when not
clustering at all.39

Figure 2 suggests that the relationship between productiv-
ity growth and the percentile of the change in robot density
is close to linear and not sensitive to a few influential obser-
vations, unlike in the case of raw changes in robot density.
We therefore use the percentile of the change in most of
our analysis, although we do discuss alternative functional
forms. While the figure suggests that increases in robot den-
sity are systematically associated with increases in labor
productivity, the figure provides further clues regarding the
productivity gains from increased robot use. As appendix
table A4 shows, the mean change in robot density was over
ten times higher in the top quartile than in the third quar-
tile, which in turn was more than ten times higher than the
average in the second quartile. Given these large differences,
our estimates suggest that the marginal impact of increasing
robot densities may be diminishing.

We now move on to document how the regression esti-
mates change when we control for potential confounding
variables and use our instrumental variables strategies. Panel
A of table 1 presents results from estimating equation (3)
accordingly. Moving from the bottom to the top of the
ranking of changes in the robot density distribution corre-
sponds to an increase of about 0.57 in the logarithm of labor

39 We employ STATA’s ivreg2 command to perform both OLS and 2SLS
estimation and to implement two-way clustering. The command implements
a correction, which adjusts for cases with few clusters (Brewer, Crossley,
& Joyce, 2013).

productivity once we control for country fixed effects in
column 2.40 This translates into increases in annual growth
of 4.1 percentage points.41 When we also control for initial
(1993) values of log wages and the ratio of capital services
to the wage bill, the OLS estimate only increases marginally.
When we further control for changes in the ratio of capital
services to the wage bill and changes in the ICT share in
total capital services, the estimated coefficient is again sim-
ilar, at 0.66.42 The coefficients on changes in other capital
are shown in column 2 of appendix table A7, which corre-
sponds to column 4 of table 1. For the capital-labor ratio,
these coefficients are at best marginally statistically signifi-
cant, while they are small and statistically insignificant in the
case of the ICT share. This suggests that for the industries
in our sample, robot adoption may indeed have been a more
important driver of labor productivity growth.

The pattern that we document, where robot densification is
associated with increased labor productivity even after con-
trolling for country trends and other potential confounders,
is strongly suggestive. Nonetheless, we may be concerned
about the interpretation of the estimates for a few reasons.
First, we might worry about attenuation bias due to measure-
ment error in the changes in robot densities. This is not a
trivial concern, given our discussion of the data construction
and the fact that we are estimating specifications in changes,
which could worsen the signal-to-noise ratio compared to
regressions on levels. Second, we might be concerned that
the estimates for labor productivity are biased because we
use the change in hours to construct both our dependent
variable and the regressor of interest. Finally, we might
worry about reverse causality, where faster-growing indus-
tries invest more in increasing their robot densities (robot
suppliers may target their products to the industries they
expect to grow fastest).

To address these concerns, we use our measures of
replaceable hours as well as reaching and handling as instru-
ments for the changes in robot density over time. Before
doing so, however, we present some suggestive evidence
visually. Appendix figures A1b and A1c show that both
measures strongly predict the increase in robot intensity: as
robot prices fell in both absolute terms and relative to wages,
industries with higher initial replaceability or more intensive
use of reaching and handling increased their use of robots
more than others. Figure A1d shows that both instruments
are positively correlated, but there are also important dif-
ferences. For example, transport equipment and metal score
highest on replaceability, while textiles and food products

40 For completeness the first column of the table reports estimates without
controlling for country trends.

41 0.57 divided by 14 equals 0.041. The precise expression for calculating
differences in annual growth rates is eβ/14 − 1, which is well approximated
by our simpler formula.

42 Since EUKLEMS data measure the entire capital stock, there is an
overlap between our estimates of the robot and capital inputs. In particular,
robots are counted as non-ICT capital, although some related software may
be counted as ICT. Adding this final set of controls requires us to drop one
country, Greece, from the sample.
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score highest on reaching and handling. Figures A1e and A1f
show that industries with high replaceability and reaching-
and-handling scores also experienced faster increases in
productivity.

Our replaceability and reaching-and-handling instruments
are empirical counterparts to the share of replaceable tasks
in our theoretical model. The finding that they are positively
related to robot adoption is consistent with predictions from
the model, reflecting both extensive and intensive margin
effects. While all industries arguably experience the same
decline in the rental price of robots, only industries whose
replaceability share (or intensity of reaching and handling)
is sufficiently large will respond to this fall.

Table 1B of table 1 reports 2SLS estimates using replace-
ability as an instrument for robot densification. The estimates
with country trends and the various controls are around 50%
larger than the OLS estimates, consistent with attenuation
bias. Table 1C of table 1 uses our reaching-and-handling
instrument instead of the replaceability instrument; while
this instrument is less prone to concerns about reverse causal-
ity, it is also slightly weaker, though it still qualifies as a
strong instrument. The resulting estimates are very similar
to those using the replaceability instrument.43

As we have noted, our preferred functional form uses
percentiles, but in appendix table A5, we present results
using alternative functional forms. Panel A reports estimates
using robot density (the number of robots divided by hours
worked). The OLS estimates are stable to the inclusion of the
set of controls. The 2SLS estimates are also stable, although
the instrument is not particularly strong. In panel B, we
instead use the logarithm of (1 plus robot density), and again
both the OLS and the 2SLS estimates are stable, and this
time we have a stronger first stage. Finally, in panel C, we
use a measure of robot services normalized by the wage bill.
Once again, the estimates are positive and quite stable, but
this time, the instrument lacks power. The upshot from this
analysis is that the positive relationship between robot densi-
fication and increases in productivity is quite robust to using
these alternative functional forms.

Although our control variables and instrumental variable
strategies mitigate potential concerns about measurement
error and reverse causality, we might still worry that replace-
able industries followed different trajectories even before
they began to adopt robots. For instance, replaceability by
robots could be correlated with replaceability by earlier
automation technologies. To mitigate such concerns, appen-
dix table A6 presents falsification tests for our replaceability
instrument. The table shows reduced-form regressions of the
type

ΔYci = δ1 + δ2replaceablei + countryc + ηci, (4)

where countryc is a set of country fixed effects.

43 When entering both instruments jointly, we generally obtain similar
results and always fail to reject the null hypothesis of instrument validity
in a standard overidentification test, as we report in the online appendix.

Panel A presents the reduced form-estimates for our full
sample (our benchmark), and as before, we see that dur-
ing the fourteen-year period from 1993 to 2007, replaceable
industries and those with high levels of reaching and han-
dling saw increases in productivity, although the estimates
are not very precise. In panel B, we restrict our sample to
country-industries that did not use any robots (robot “non-
adopters”) in 1993. The coefficients for this sample are
similar but imprecisely estimated. At the bottom of the
table, we report the p-value from tests for equality of coef-
ficients across the various panels. We cannot reject that the
relationship between productivity growth and the share of
replaceable hours (reaching and handling) is the same in our
benchmark and in the sample of 1993 nonadopters. This
suggests that it could be instructive to estimate equation
(4) for a sample of nonadopters and over the corresponding
measurement period of nonadoption.44

Next, in panel C of appendix table A6, we restrict the
sample to industries that had not yet adopted robots in 2007.
This sample is small, comprising only 27 observations, so
the estimates are less precise. Nonetheless, they suggest that
replaceable industries do not follow systematically different
trends before they start to employ robots. For the replaceabil-
ity index (though not for the reaching-and-handling index),
we reject that the coefficient in the full sample is the same
as that in the sample of nonadopters.

What about the relationship between productivity growth
and replaceability (reaching and handling) during the
fourteen-year period from 1979 to 1993? Since some
country-industries started using robots before 1993, we
would not expect the coefficient on instruments to be 0, but
given the large share of nonadopters, we expect the mag-
nitude to be smaller. This is exactly what we find in panel
D of appendix table A6. However, if we restrict the sample
to country-industries not using robots during this period, we
again find no relationship between replaceability and pro-
ductivity growth (panel E). In all of these last three cases,
we reject that the estimates are the same as our benchmark.

The findings we have presented so far establish robust
positive associations between increased robot use and labor
productivity. The results persist when we control for poten-
tial confounders, such as capital intensity and ICT, and for
instrumenting increased robot use with a measure of the
replaceability of labor or with the use of reaching and han-
dling tasks. We add further controls in appendix tables A7
and A8.

In appendix table A7, we report both OLS and 2SLS
specifications controlling for differences in task input across
industries other than the replaceability of labor by robots.

44 The fact that some country-industries did not adopt industrial robots
by 1993 and some not even by 2007 suggests that these country-industries
might be special, and the relationships between outcomes and replaceability
might not be the same for these observations as it would be for the rest of
the sample in the absence of robots. However, the similarities of results in
panels A and B mitigate this concern.
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As documented by Autor et al. (2003), an industry’s inten-
sity of routine, abstract, and manual task inputs predicts the
rate at which it adopts ICT, and this would be a concern if
these other task measures are correlated with replaceability.
While we have shown that our results are robust to control-
ling for ICT directly, controlling instead for predictors of
ICT adoption may be preferable as it gets around the joint
determination of ICT and robot use. Another task attribute
that is correlated with replaceability is offshoreability, and
this is a concern because offshoring became more prevalent
during our sample period. The coefficients on robot adop-
tion, while reduced in magnitude, remain economically and
statistically significant when including these controls in both
the OLS and the 2SLS specifications (columns 3 and 4 and
7 and 8).45

In appendix table A8, we report both OLS and 2SLS esti-
mates using additional controls. We begin in column 1 with
our baseline set of controls, as in column 3 of table 1. Column
2 further controls for changes in the hour shares of middle-
and high-skill workers. These shares may themselves be out-
comes, so it is not obvious that adding them gets us closer
to the causal effect of robots. Nonetheless, adding them
mitigates concerns that the productivity gains we find are
driven by compositional changes in the workforce, a point
to which we will return. In practice, adding these controls
reduces our baseline estimates by around 10% on average,
but our estimates remain positive and significant. The only
exception is in panel C, where the first-stage F-statistic using
the reaching-and-handling instrument is now just above the
critical value and the 2SLS estimate is marginally significant.

Another potential concern is that even after controlling for
observed levels of education, we may be missing some other
dimension of worker upgrading associated with increased
robot use. To mitigate this concern, column 3 adds changes
in log wages as a control. As before, these wages themselves
may be an outcome, but our estimates for productivity remain
positive and statistically significant even after we control for
changes in wages (again except for panel C).

To check whether our OLS results could be driven by
unobserved differential trends across industries, column 4
includes industry fixed effects, which allows us to control
for industry-specific trends, given that we estimate first dif-
ferences. This is a demanding specification since it may be
precisely the differences in production processes between
industries that are important in explaining increased robot
use. Panel A of appendix table A8 shows that the relation-
ships between productivity growth and robot densification
are still positive and statistically significant but smaller in
magnitude (it falls to 0.35; compared to 0.64 in our baseline
estimate). This lower estimate may reflect some unobserved
omitted variables that we pick up only with industry fixed
effects (indeed, the OLS estimate when controlling for indus-
try trends is virtually the same as that when controlling for

45 Unfortunately, the reaching-and-handling instrument has no predictive
power for robot densification when controlling for other task measures.

other industry-level task measures, as in column 3 of appen-
dix table A7). But it may also reflect a lower signal-to-noise
ratio, since we are now discarding much of the variation in
our data. When we add further controls, the OLS estimates
become a little smaller and imprecise (columns 5 and 6 of
appendix table A8).

We have also tried to learn what increased robot use
implies for productivity using a shift-share instrument. To
do so, we calculate for each of the fourteen industries its
global robot density in 1993 and for each of seventeen coun-
tries its change in aggregate robot density from 1993 to
2007. We then multiplied the two measures for each of 238
country-industry cells and computed the percentile rank of
the product (weighted by 1993 within-country employment
shares). The results (available on request) are similar to the
ones above when we add our usual set of controls.46

Results from further robustness checks are very simi-
lar to the ones reported here and are available on request.
The robustness checks include controlling for prior growth
in outcome variables, using depreciation rates of 5% and
15% when constructing the robot stock, restricting the sam-
ple to tradeable industries, dropping country-industries for
which baseline robot stocks had to be imputed, dropping one
industry at a time, and dropping one country at a time.

We also examine how robot densification and labor pro-
ductivity changed in two subperiods: from 1993 to 2000 and
from 2000 to 2007 (results again available on request). Our
estimates are positive for both subperiods: the OLS esti-
mates are somewhat larger for the second subperiod, while
the 2SLS estimates using either instrument (or both together)
are somewhat larger for the first subperiod. But in all cases,
we find positive estimates, and there is no clear evidence that
the relationship between robot densification and increased
productivity has changed over time.

We are also interested in seeing to what extent the
labor productivity gains were achieved through increases in
value added, reductions in hours worked, or both. Appendix
table A9 reports estimates of specifications similar to those
we considered so far, but this time using value added and
hours as separate outcomes. Panel A of the table presents
OLS results with various controls. The results suggest that
robot densification was associated with increases in value
added: the estimates are positive and similar to the productiv-
ity estimates, and they are for the most part either statistically
significant or marginally so. The 2SLS estimates are also
generally positive but imprecisely estimated.

The OLS estimates for hours worked are generally small
and indistinguishable from 0 regardless of the set of con-
trols that we use. The 2SLS estimates are also imprecise,
though they are mostly negative. Unlike changes in total
hours worked, changes in the skill composition of hours
show a stronger relationship with robot adoption, which we
explore in section IVD.

46 The shift-share instrument lacks power when we control for industry
trends.
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C. Magnitudes

Having presented our main estimates and examined their
robustness, we next consider the implications for aggregate
labor productivity of our regression estimates. We consider
a counterfactual scenario in which robot densities (robots
per million hours worked) in 2007 would have remained
the same as in 1993. We calculate how much lower labor
productivity would have been in this case. The details of our
calculation are described in the online appendix.

This calculation is subject to some caveats. Specifically,
we do not account for the possibility of spillovers across
industries. For example, by growing faster, robot-using
industries may have taken up resources that would otherwise
have been used by other industries, leading us to over-
estimate the gains from increased robot use. Or, to take a
different example, the increased use of robots may have
reduced the price of products sold to other industries and
used as inputs, making us underestimate the gains from
increased robot densification. Another potential limitation
of this counterfactual is that without robot densification, fac-
tors may have reallocated differently across industries over
time.

These caveats notwithstanding, our analysis suggests that
productivity would have been about 5.1% lower in the
absence of robot densification. This implies that robot den-
sification increased annual growth of labor productivity by
about 0.36 percentage points. As we discuss in the online
appendix, the contribution of robots to productivity growth
is on a similar order of the steam engine in the nineteenth
century and a little lower than highways in the middle of the
twentieth century, and ICT in more recent decades.

In sum, our regression analysis suggests that the contri-
bution of robot densification to growth has been substantial.
This finding is consistent with evidence on the returns to
robot adoption from 24 case studies provided by the Dan-
ish robot manufacturer Universal Robots, covering a wide
range of industries including pharmaceuticals, food, plastics,
machine parts, glass, and furniture. While these case stud-
ies may not be representative of all industrial robot adoption
episodes, they provide a rare window on the economic contri-
butions of contemporary robots at the firm level. Across the
24 cases, payback times range from two to eighteen months.
We explain in the theory appendix how payback times can
be used to calculate the annual rate of return to robot use
under assumptions on the depreciation rate, service life, and
the interest rate (i.e., the rate of return on an alternative, safe
investment such as a risk-free bond). Let us take the interest
rate to be 5%. If we further assume, consistent with the way
we constructed the data on robot stock, a depreciation rate of
10% and an infinite service life, then payback times of two
and eighteen months imply annual returns of 202% and 25%,
respectively.47 Clearly, these are large returns, and they raise

47 If we instead assume, as does the IFR, zero depreciation and a service
life of twelve years, then these payback times imply a return of almost 600%
and 63%, respectively.

Table 2.—Further Outcomes: TFP and Prices

Δ ln(TFP) Δ ln(P)

(1) (2) (3) (4) (5) (6)

A. OLS
Robot adoption 0.26 0.47 0.47 −0.38 −0.47 −0.51

(0.20) (0.19) (0.19) (0.18) (0.20) (0.21)

B. IV: Replaceable hours
Robot adoption 0.62 0.79 0.79 −0.55 −0.66 −0.72

(0.40) (0.32) (0.32) (0.47) (0.35) (0.35)

F-statistic 47.7 32.7 35.0 41.8 33.9 36.8
C. IV: Reaching and handling

Robot adoption 0.39 0.63 0.64 −0.40 −0.67 −0.71
(0.46) (0.37) (0.36) (0.56) (0.43) (0.38)

F-statistic 39.3 17.3 17.2 30.1 16.1 19.3
Country trends and � � � �

controls
Changes in other capital � �
Observations 210 210 210 238 238 224

“Robot adoption” refers to the percentile in the weighted distribution of changes in robot density, divided
by one hundred. “Controls” includes initial (1993) values of log wages and the ratio of capital services
to the wage bill. “Changes in other capital” indicates that changes in the ratio of capital services to the
wage bill and changes in the ICT share in total capital services are controlled for. Data on TFP are missing
for Greece and South Korea, and on the ICT share, for Greece in the EUKLEMS data. Robust standard
errors, two-way clustered by country and industry, are in parentheses. Regressions are weighted by 1993
within-country employment shares.

the question why robots have not been adopted more widely
and why the aggregate contribution of robots is not even
larger than what we find. One possible explanation is that
many firms have few replaceable tasks. Further constraints
may include managerial resources, imperfect information,
and inelastic demand at the firm level, at least in the short
run.48 While the precise impediments to robot adoption may
vary, we conclude that the limited firm-level evidence that
we do have is consistent with a substantial contribution of
robots to aggregate productivity growth.

D. Further Outcomes

We have so far discussed our main set of results, show-
ing that robot densification increased labor productivity. We
now turn to investigating the role of robot densification
for other outcomes: total factor productivity (TFP), output
prices, wages, and different skill groups’ shares of hours
worked.

We begin in columns 1 to 3 of table 2, using the change in
the log of total factor productivity (TFP) as the outcome. The
OLS estimates with controls suggest that robot densification
was associated with a significant increase in TFP, which is
roughly two-thirds as large as the increase in labor productiv-
ity. The 2SLS estimates using the replaceability instrument,
or the reaching-and-handling instrument, or both, are also
positive and in most cases significant (or marginally so), and
they are again roughly two-thirds as large as the equivalent
estimates for labor productivity.49

Next, in columns 4 to 6 of table 2, we use the change
in the log of output prices as our outcome of interest. The

48 In conversations with industry representatives, we learned that medium-
sized manufacturing firms often enter long-term contractual relationships
with customers, and these firms may therefore find it difficult to substantially
raise sales volume in the short run.

49 Data on TFP are missing for Greece and South Korea.
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Table 3.—Further Outcomes: Hourly Wages

Δ ln(mean hourly wage)

(1) (2) (3) (4)

A. OLS
Robot adoption −0.010 0.057 0.042 0.039

(0.026) (0.013) (0.016) (0.017)

B. IV: Replaceable hours
Robot adoption 0.067 0.097 0.085 0.087

(0.043) (0.023) (0.021) (0.021)

F-statistic 41.8 33.9 30.4 34.8
C. IV: Reaching and handling

Robot adoption 0.075 0.142 0.119 0.118
(0.058) (0.032) (0.031) (0.031)

F-statistic 30.1 16.1 12.5 15.8
Country trends and controls � � �
Changes in skill mix � �
Changes in other capital �
Observations 238 238 238 224

“Robot adoption” refers to the percentile in the weighted distribution of changes in robot density, divided
by one hundred. “Controls” includes initial (1993) values of log wages and the ratio of capital services to
the wage bill. “Changes in skill mix” indicates that changes in the hour shares of middle- and high-skill
workers are controlled for. “Changes in other capital” indicates that changes in the ratio of capital services
to the wage bill and changes in the ICT share in total capital services are controlled for. Data on the ICT
share are missing for Greece in the EUKLEMS data. Robust standard errors, two-way clustered by country
and industry, are in parentheses. Regressions are weighted by 1993 within-country employment shares.

OLS and the 2SLS estimates are all negative and in most
cases statistically significant, although, again, some of them
are only marginally significant. The magnitude of the price
declines associated with robot densification is very similar
to the TFP gains we report in the previous paragraph.

The two results above suggest that most of the labor pro-
ductivity gains from increased use of industrial robots accrue
to consumers. But do workers also benefit, and if so, to
what extent? In table 3, we use the same specifications as
before, but this time with the change in the log of mean
hourly wages as the outcome variable. Panel A presents the
OLS estimates. Here the estimate without country trends is
close to 0, but once we add country trends, the estimated
coefficient becomes positive and significant, and this pattern
persists as we control for various controls, including changes
in the skill mix, capital intensity, and ICT. The magnitudes
are, however, much smaller than the TFP estimates, and they
are typically around 10% of the labor productivity gains.
The 2SLS estimates using either instrument (or both) paint
a similar picture: gains in wages that are roughly an order
of magnitude smaller than the labor productivity gains.

But if workers seem to gain from the increased use of
industrial robots, are the gains shared equally across dif-
ferent skill groups? Here, as table 4 suggests, the answer
seems to be negative. In this table, we report estimates
of the share of hours worked by high-skilled (usually col-
lege graduates), low-skilled (typically high school dropouts),
and middle-skilled workers (those with intermediate levels
of schooling).50 The OLS and 2SLS estimates for the two
higher-skilled groups are typically positive and in most cases

50 Because the three shares add to 1, we could have reported just two of
them, but reporting all three allows readers to gauge the precision of each
point estimate.

Table 4.—Further Outcomes: Share in Hours Worked by Skill Group

High Middle Low

(1) (2) (3) (4) (5) (6)

A. OLS
Robot adoption 1.94 1.64 3.85 4.07 −5.79 −5.72

(1.91) (1.85) (3.23) (2.89) (1.63) (1.65)

B. IV: Replaceable hours
Robot adoption 1.81 1.22 8.21 7.37 −10.0 −8.59

(3.11) (2.84) (5.58) (4.36) (3.44) (2.68)

F-statistic 33.9 36.8 33.9 36.8 33.9 36.8
C. IV: Reaching and handling
Robot adoption 7.14 5.95 1.65 2.91 −8.78 −8.87

(3.40) (3.09) (4.83) (4.21) (3.38) (3.56)

F-statistic 16.1 19.3 16.1 19.3 16.1 19.3
Country trends and � � � � � �

controls
Changes in other capital � � �
Observations 238 224 238 224 238 224

“Robot adoption” refers to the percentile in the weighted distribution of changes in robot density, divided
by 1000. “Controls” includes initial (1993) values of log wages and the ratio of capital services to the wage
bill. “Changes in other capital” indicates that changes in the ratio of capital services to the wage bill and
changes in the ICT share in total capital services are controlled for. Data on the ICT share are missing for
Greece in the EUKLEMS data. Robust standard errors, two-way clustered by country and industry, are in
parentheses. Regressions are weighted by 1993 within-country employment shares.

imprecise. In contrast, the OLS and 2SLS estimates for low-
skilled workers are large and negative, and in almost all cases
statistically significant. These findings suggest that there are
losers, as well as winners, from the adoption of industrial
robots. Moreover, the losers (at least in relative terms) are
in this case low-skilled workers.51 This result is noteworthy
given the recent findings in the literature that some tech-
nological change is biased against middle-skilled workers
(see, e.g., the discussion of the effect of ICT in Michaels
et al. (2014) and more general discussions in Goos et al.
(2014), Goos and Manning (2007), and Autor (2014)).

V. Conclusion

We study here for the first time the relationship between
industrial robots and economic outcomes across much of
the developed world. Using a panel of industries in seven-
teen countries from 1993 to 2007, we find that increased
use of industrial robots is associated with increases in labor
productivity. We find that the contribution of increased use
of robots to productivity growth is substantial and calculate
using conservative estimates that it comes to 0.36 percentage
points, accounting for 15% of the aggregate economy-wide
productivity growth. The pattern that we document is robust
to including various controls for country trends and changes
in the composition of labor and other capital inputs. We
also find that robot densification is associated with increases
in both total factor productivity and wages, and reduc-
tions in output prices. We find no significant relationship
between the increased use of industrial robots and overall

51 We have also considered wage bill shares and wages by skill group as
outcomes (results available on request). As with shares in hours worked, we
find negative estimates for the change in the wage bill share of low-skilled
workers, while wages do not seem to be differentially affected across skill
groups.
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employment, although we find that robots may be reducing
the employment of low-skilled workers.

As of 2007, industrial robots accounted for only around
2.25% of the capital stock in robot-using industries, and their
use was relatively limited, even in the developed economies
that we study. If the quality-adjusted prices of robots keep
falling at a rate similar to that observed over the past
decades, and as new applications are developed, there is
every reason to believe that they will continue to increase
labor productivity. Recently, the development of robots has
been increasingly directed toward services. Areas that are
experiencing particularly rapid expansions include medi-
cal robots, factory logistic systems, and unmanned aerial
vehicles, popularly known as drones (IFR, 2012).

Another area where autonomous machines hold both
promise and threat to jobs is self-driving vehicles. If and
when they become commercially viable, self-driving cars
offer a more convenient, more flexible, and safer mode of
transportation. At the same time, they pose a threat to the
employment of drivers with few recognized qualifications,
including many immigrants from less developed countries.

Our analysis focused (due to data limitations) on devel-
oped economies. But recent evidence (Financial Times,
2014; IFR, 2014) shows that robots are increasingly used
also in developing countries, and China is already the world’s
leading buyer of robots. The contribution of robots to world-
wide growth in the upcoming decades may be even larger
than the one we document.

At the same time, the evidence suggests that marginal
returns on increased robot densification seem to diminish
fairly rapidly. We also caution that the rise of robots is not a
blessing for all: we find that low-skilled workers in particular
may lose out.
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