
What data patterns can lie behind a correlation
coefficient?

Jan Vanhove

(For the original blog post (21 November 2016), see http://janhove.github.io/teaching/2016/11/21/
what-correlations-look-like.)

In this post, I want to, first, help you to improve your intuition of what data patterns correlation coefficients
can represent and, second, hammer home the point that to sensibly interpret a correlation coefficient, you
need the corresponding scatterplot.

The briefest of introductions to correlation coefficients

If you haven’t dealt with correlation coefficients much, a correlation coefficient, abbreviated as r, is a
number between -1 and 1 that captures the strength of the linear relationship between two numeric variables.
For instance, say you’ve asked 30 people about their weight and body height and plot these 30 (weight,
height)-pairs in a scatterplot.

• If all 30 data points fall perfectly on an increasing line, then the correlation between these two variables
will be r = 1.

• If, however, the general shape of the (weight, height) relationship is an increasing one but the 30 data
points don’t fall perfectly on a single line, then r will be somewhere between 0 and 1; the closer the
data points are to a straight line, the closer to 1 r will be.

• If the relationship is a decreasing one, then r will lie between 0 and -1,

• and if there’s no linear relationship between weight and height at all, r will be 0.

You’ll find plenty of examples below.

One correlation coefficient can represent any number of patterns

Correlation coefficients are popular among researchers because they allow them to summarise the relationship
between two variables in a single number. However, a given correlation coefficient can represent any number
of patterns between two variables, and without more information (ideally in the form of a scatterplot), the
researchers themselves and their readers have no way of knowing which one.

To illustrate this, I’ve written an R function, plot_r(), that takes as its input a correlation coefficient and
a sample size and outputs 16 quite different scatterplots that are all characterised by the same correlation
coefficient. Below I first show and comment on how scatterplots for correlation coefficients of 0.5 and 0 based
on 50 pairs might look like. Then, for those of you who don’t use R, I provide scatterplots for a couple of
other correlation coefficients so you can develop a sense of what the patterns underlying these correlation
coefficients could look like.

What r = 0.5 might look like

First, source() the plot_r() function or download. Then, in R, you can draw scatterplots corresponding
to a correlation coefficient of r = 0.5 and 50 observations like this. (You’ll end up with a different set of
scatterplots as the scatterplots are created randomly.)
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source("http://janhove.github.io/RCode/plot_r.R")
plot_r(r = 0.5, n = 50)

(1) Normal x, normal residuals (2) Uniform x, normal residuals (3) +−skewed x, normal residuals (4) −−skewed x, normal residuals

(5) Normal x, +−skewed residuals (6) Normal x, −−skewed residuals (7) Increasing spread (8) Decreasing spread

(9) Quadratic trend (10) Sinusoid relationship (11) A single positive outlier (12) A single negative outlier

(13) Bimodal residuals (14) Two groups (15) Sampling at the extremes (16) Coarse data

All correlations: r(50) = 0.5

Some comments

Top row

I suspect that when people think of a relationship with a correlation coefficient of 0.5, they have something
like plots (1) and (2) in their mind’s eye. For both plots, the underlying relationship between X and Y is
linear, and the Y values are normally distributed about the best-fitting straight line. The minor difference
between (1) and (2) is that for (1), X is normally distributed and for (2), X is uniformly distributed. These
two plots represent the kind of relationship that r was meant to capture.

Plot (3) differs from (1) and (2) in that the X variable is now sampled from a skewed distribution. In this
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case, most X values are comparatively low but one X value is fairly large; if you run the code yourself, you
may find that there are no outlying values or that there are more than one. Such a distribution may occur
occur when X represents, for instance, participants’ performance on a task that was too difficult (floor effect).
In such a case, one or a couple of outlying but genuine X values may (not will) have ‘high leverage’, that is,
they may unduly affect the correlation coefficient by pulling it up or down.

The problem in (4) is similar to the one in (3), but now most X values are comparatively large and a handful
are fairly low, perhaps because X represents participants’ performance on a task that was too easy (ceiling
effects). Here, too, outlying points may have ‘high leverage’, i.e., they may unduly affect the correlation
coefficient such that it doesn’t accurately characterise the bulk of the data.

Second row

Plots (5) and (6) are variations on the same theme as in plots (3) and (4): The Y values aren’t normally
distributed about the regression line but are skewed. In such cases, too, some outlying but genuine Y values
may (not will) have ‘high leverage’, i.e., they may pull the correlation coefficient up or down much more than
ordinary data points.

Plots (7) and (8) are two examples where the variability of the Y values about the straight line increases
and decreases, respectively, as X becomes larger, though admittedly, it isn’t very clear in this example. This
is known as heteroskedasticity. The main problems with blindly relying on correlation coefficients in the
presence of heteroskedasticity, in my view, are that (a) ‘r = 0.5’ both _under_sells how well Y can be
estimated from X for low (high) X values and _over_sells how well Y can be estimated from X for high (low)
X values, and (b) by just reporting the correlation coefficient you gloss over an important aspect of the data.
Additionally, heteroskedasticity may affect your inferential statistics.

Third row

Plot (9) illustrates that correlation coefficients express the strength of the linear relationship between two
variables. If the relationship isn’t linear, they’re hardly informative. In this case, r = 0.5 seriously understates
the strength of the XY relationship, which happens to be non-linear (quadratic in this case). The same goes
for (10), where r = 0.5 understates the strength of the XY relationship and misses out on the cyclical nature
of the relationship.

Plots (11) and (12) illustrate how a single outlying point, e.g., due to a technical error, can produce misleading
correlation coefficients. In (11), a single outlying data point produces the significant positive correlation; had
only the 49 data points on the left been considered, a negative relationship would’ve been observed (the
dashed red line). Blindly going by r = 0.5 mischaracterises the bulk of the data. In (12), the relationship is
considerably stronger than r = 0.5 suggests for the bulk of the data (the dashed red line); the outlier pulls
the correlation coefficient down. Plots (11) and (12) differ from plots (3) and (4) in that in plots (3) and (4),
the X values were all sampled from the same–but skewed–distribution and are, as such, genuine data points;
in plots (11) and (12), the outliers were caused by a different mechanism from the other data points (e.g., a
coding error or a technical glitch).

Fourth row

In (13), the Y values are bimodally distributed about the regression line. This suggests that we have
overlooked an important aspect of the data, such as grouping factor: perhaps the datapoints above the
regression line were sampled from a different population than those below the regression line.

The situation in plot (14) is similar to but considerably worse than the one in (13): The dataset contains two
groups, but unlike in (13), the overall trend captured by r = 0.5 betrays the fact that within each of these
groups, the XY relationship is actually negative. Plot (14) will often, but not always, produce such a pattern,
which is known as Simpson’s paradox.

Plot (15) depicts a situation where the researchers, rather than investigating the XY relationship along the
entire X range, only investigated the cases with the most extreme X values. Sampling at the extremes inflates
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correlation coefficients (see reason no. 2 why I don’t particularly like correlation coefficients to begin with).
In other words, if you took a sample of 150 XY cases and only looked at the 50 most extreme X observations,
you’d end up with a correlation coefficient that is very likely to be larger than the one you’d observe if you
looked at all 150 cases.

Plot (16), finally, is what I suspect many correlation coefficients actually represent. The X and Y data are
lumpy, for instance, because they represent count data or responses to questionnaire data. I don’t think
correlation coefficients for such patterns are deceptive per se, but we’re clearly talking about a different
pattern than in plots (1) and (2).

What r = 0 might look like

plot_r(r = 0, n = 50)

(1) Normal x, normal residuals (2) Uniform x, normal residuals (3) +−skewed x, normal residuals (4) −−skewed x, normal residuals

(5) Normal x, +−skewed residuals (6) Normal x, −−skewed residuals (7) Increasing spread (8) Decreasing spread

(9) Quadratic trend (10) Sinusoid relationship (11) A single positive outlier (12) A single negative outlier

(13) Bimodal residuals (14) Two groups (15) Sampling at the extremes (16) Coarse data

All correlations: r(50) = 0
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Some comments

The main point I want to make here is that r = 0 doesn’t necessarily mean that there’s no XY relationship.
This is clear from plots (9) and (10), which evince strong non-linear relationships. Plots (11) and (12)
similarly underscore this point: There exists a strong relationship for the bulk of the data, but this trend is
cancelled out by a single outlying data point. Occasionally, in plot (14), a trend present in two subgroups
may not be visible in an aggregated analysis; this doesn’t seem to be the case in this example, though.

Two other examples

A weak positive correlation: r = 0.1
plot_r(r = 0.1, n = 50)

(1) Normal x, normal residuals (2) Uniform x, normal residuals (3) +−skewed x, normal residuals (4) −−skewed x, normal residuals

(5) Normal x, +−skewed residuals (6) Normal x, −−skewed residuals (7) Increasing spread (8) Decreasing spread

(9) Quadratic trend (10) Sinusoid relationship (11) A single positive outlier (12) A single negative outlier

(13) Bimodal residuals (14) Two groups (15) Sampling at the extremes (16) Coarse data

All correlations: r(50) = 0.1

A strong negative correlation: r = -0.9
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plot_r(r = -0.9, n = 50)

(1) Normal x, normal residuals (2) Uniform x, normal residuals (3) +−skewed x, normal residuals (4) −−skewed x, normal residuals

(5) Normal x, +−skewed residuals (6) Normal x, −−skewed residuals (7) Increasing spread (8) Decreasing spread

(9) Quadratic trend (10) Sinusoid relationship (11) A single positive outlier (12) A single negative outlier

(13) Bimodal residuals (14) Two groups (15) Sampling at the extremes (16) Coarse data

All correlations: r(50) = −0.9

Storing the data

If you want to store the data underlying one or all of the plots, you can set the optional showdata parameter
to either all or a number between 1 and 16 corresponding to one of the plots:
# Show data for plot 11 (not run)
plot_r(r = 0.4, n = 10, showdata = 11)
# Show data for all plots (not run)
plot_r(r = 0.8, n = 15, showdata = "all")
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Conclusions

I hope the plot_r() function helps you to develop a feel for what correlation coefficients may actually
represent and that this post may convince more researchers to draw scatterplots before running any
correlation analyses—or regression analyses, for that matter—and to actually show them when reporting
correlations.
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