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We develop a model that, at the aggregate level, is similar to the one-
sector neoclassical growth model, while, at the disaggregate level, has im-
plications for the path of observable measures of technology adoption. We
estimate it using data on the di¤usion of 15 technologies in 166 countries
over the last two centuries. Our results reveal that, on average, coun-
tries have adopted technologies 45 years after their invention. There is
substantial variation across technologies and countries. Newer technolo-
gies have been adopted faster than old ones. The cross-country variation
in the adoption of technologies accounts for at least 25% of per capita
income di¤erences.
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Most cross-country di¤erences in per capita output are due to di¤erences in total factor
productivity (TFP), rather than to di¤erences in the levels of factor inputs.1 These cross-
country TFP disparities can be divided into two parts: those due to di¤erences in the
range of technologies used and those due to non-technological factors that a¤ect the
e¢ ciency with which all technologies and production factors are operated. In this paper,
we explore the importance of the range of technologies used to explain cross-country
di¤erences in TFP.
Existing studies of technology adoption are not well suited to answer this question.

On the one hand, macroeconomic models of technology adoption (e.g. Stephen L. Par-
ente and Edward C. Prescott, 1994, and Susanto Basu and David N. Weil, 1998) use
an abstract concept of technology that is hard to match with data. On the other hand,
the applied microeconomic technology di¤usion literature (Zvi Griliches, 1957, Edwin
Mans�eld, 1961, Michael Gort and Steven Klepper, 1982, among others) focuses on the
estimation of di¤usion curves for a relatively small number of technologies and countries.
These di¤usion curves, however, are purely statistical descriptions which are not embed-
ded in an aggregate model. Hence, it is di¢ cult to use them to explore the aggregate
implications of the empirical �ndings.2
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2Another strand of the literature has also used more aggregate measures of di¤usion to explore the
determinants of adoption lags (Gary R. Saxonhouse and Gavin Wright, 2004, and Francesco Caselli and
W. John Coleman, 2001) or the di¤usion curve (Rodolfo Manuelli and Ananth Seshadri, 2003) for one
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In this paper we bridge the gap between these two literatures by developing a new model
of technology di¤usion. Our model has two main properties. First, at the aggregate level
it is similar to the one-sector neoclassical growth model. Second, at the disaggregate level
it has implications for the path of observable measures of technology adoption. These
properties allow us to estimate our model using data on speci�c technologies and then
use it to evaluate the implications of our estimates for aggregate TFP and per capita
income.
A technology, in our model, is a group of production methods that is used to produce

an intermediate good or service. Each production method is embodied in a di¤erentiated
capital good. A potential producer of a capital good decides whether to incur a �xed cost
of adopting the new production method. If he does, he will be the monopolist supplying
the capital good that embodies the speci�c production method. This decision determines
whether or not a production method is used, which is the extensive margin of adoption.
The size of the adoption costs a¤ects the length of time between the invention and the

eventual adoption of a production method, i.e. its adoption lag. Once the production
method has been introduced, its productivity determines how many units of the associated
capital good are demanded, which re�ects the intensive margin of adoption.
Our model is very similar in spirit to the barriers to riches model of Parente and

Prescott (1994), which also yields endogenous TFP di¤erentials across countries due to
di¤erent adoption lags. Endogenous adoption decisions determine the growth rate of
productivity embodied in the technology through two channels. First, because new pro-
duction methods embody a higher level of productivity their adoption raises the average
productivity level of the production methods in use. This is what we call the embodiment
e¤ect. Second, an increase in the range of production methods used also results in a gain
from variety that boosts productivity. This is the variety e¤ect.
When the number of available production methods is very small, an increase in the

number of methods has a relatively large e¤ect on embodied productivity. As this number
increases, the productivity gains from such an increase decline. Thus, the variety e¤ect
leads to a non-linear trend in the embodied productivity level. Since adoption lags a¤ect
the range of production methods used, and thus the variety e¤ect, adoption lags a¤ect
the curvature of the path of embodied productivity. Our model maps this curvature in
embodied productivity into similar non-linearities in the evolution of observable measures
of technology adoption, such as the number of units of capital that embody a given
technology or the output produced with this technology. We use this curvature in the
data to identify adoption lags.
For an example of this curvature, consider Figure 1. It shows the log of Kilowatt hours

of electricity produced over the last 100 years in the US, Japan, the Netherlands and
Kenya. These curves are roughly the graphic result of shifting a unique curve both hori-
zontally and vertically. This hypothesis is broadly con�rmed in a formal test we conduct
in section 4.2. According to our model, the horizontal shifts are associated with di¤er-
ences in the lags with which new production methods are adopted in di¤erent countries,
while vertical shifts re�ect many other things including the size of the country and its
overall productivity level. The horizontal shifts a¤ect the curvature of the line at each
point in time. In particular, our model determines how the curvature of these measures
depends on adoption lags and on economy-wide conditions that determine aggregate de-
mand. By using the model predictions about how these factors a¤ect the curvature of
these measures of technology di¤usion, we identify the adoption lags for each technology
and country.
We use data from Diego Comin, Bart Hobijn, and Emilie Rovito (2006) to explore

technology.
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the adoption lags for 15 technologies for 166 countries. Our data cover major technolo-
gies related to transportation, telecommunication, IT, health care, steel production, and
electricity. We obtain precise and plausible estimates of the adoption lags for two thirds
of the 1278 technology-country pairs for which we have su¢ cient data. There are three
main �ndings that are especially worth taking away from our exploration.
First, adoption lags are large. The average adoption lag is 45 years. There is, however,

substantial variation in these lags, both across countries and across technologies. The
standard deviation in adoption lags is 39 years. An analysis of variance yields that 53
percent of the variance in adoption lags is explained by variation across technologies, 18
percent by cross-country variation, and 11 percent by the covariance between the two.
The remaining 17 percent is unexplained. We also �nd that newer technologies have been
adopted faster than older ones. This acceleration in technology adoption has taken place
during the whole two centuries that are covered by our data. Thus, it started long before
the digital revolution or the post-war globalization process that might have contributed
to the rapid di¤usion of technologies in recent decades.
Second, the remarkable development records of Japan in the second half of the Nine-

teenth Century and the �rst half of the Twentieth Century and of the �East Asian Tigers�
in the second half of the Twentieth Century all coincided with a catch-up in the range of
technologies used with respect to industrialized countries. All these development �mira-
cles�involved a substantial reduction of the technology adoption lags in these countries
relative to those in (other) OECD countries.
Third, our model can be used to quantify the aggregate implications of the estimated

adoption lags for cross-country per capita income di¤erentials. Cross-country di¤erences
in the timing of adoption of new technologies seem to account for at least a quarter of
per capita income disparities.
The rest of the paper is organized as follows. In the next section we introduce a version

of the one-sector neoclassical growth model with adoption lags. We derive how the model
yields an endogenous level of TFP as a result of the delay in the di¤usion of technologies.
We then show how the adoption lags result in the curvature in observable measures of
technology adoption that we exploit in our empirical analysis. In Section II we describe
our empirical methodology. We introduce the measures of technology di¤usion that we
use for our estimation, derive the reduced form equations that we estimate, and explain
how adoption lags are identi�ed and how we estimate them. In Section III, we present our
estimates, discuss their robustness to alternative econometric speci�cations and economic
interpretations, use them for country case-studies, and quantify their implications for
cross-country TFP di¤erentials. In Section IV, we conclude by presenting directions for
future research. Two Appendices follow. One contains the details of our data and the
other the main mathematical derivations.3

I. A one-sector growth model with adoption lags

The one-sector model that we introduce here serves two purposes. First, we use it to
illustrate how endogenous adoption lags result in endogenous TFP di¤erentials. Second,
we use it to show how adoption lags yield curvature in the TFP level of new technologies.
This curvature translates into non-linearities in the time-path of observable measures of
technology di¤usion that we exploit for our empirical analysis. In what follows, we omit
the time subscript, t, where obvious.

3Additional mathematical details are provided in an online Appendix.
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A. Preferences

A measure one of households populate the economy. They inelastically supply one unit
of labor every instant, earn the real wage rate W , and derive the following utility from
their consumption �ow

(1) U =

Z 1

0

e��t ln(Ct)dt.

Here Ct denotes per capita consumption and � is the discount rate. We further assume
that capital markets are perfectly competitive and that consumers can borrow and lend
at the real rate er.
The resulting optimal savings decision yields the Euler equation which implies that the

growth rate of consumption equals the di¤erence between the real rate and the discount
rate. The initial level of consumption is pinned down by the household�s lifetime budget
constraint.

B. Technology

Final goods production:
Final output, Y , is produced competitively by combining a continuum of intermediate
goods, indexed by v. Output of each intermediate good, Yv, is produced by combining la-
bor and capital, Kv, that embodies a speci�c production method that we call a technology
vintage (or vintage) in the following Cobb-Douglas form:

(2) Yv = ZvL
1��
v K�

v ,

Productivity embodied in each vintage is captured by the variable Zv and is constant
over time.

Each instant, a new production method appears exogenously, such that the set of
vintages available at time t is given by V = (�1; t]. The embodied productivity of new
vintages grows at a rate 
 across vintages, such that

(3) Zv = Z0e

v.

This characterizes the evolution of the world technology frontier.

A country does not necessarily use all the capital vintages that are available in the
world because, as we discuss below, making them available for production is costly. The
set of vintages actually used is given by V = (�1; t � D]. Here D � 0 denotes the
adoption lag. That is, the amount of time between when the best technology in use in
the country became available and when it was adopted.

We consider a technology to be a set of production methods used to produce closely
related intermediates. In particular, in the context of our model, we consider two tech-
nologies: an old one, denoted by o, and a new one, denoted by n. The old technology
consists of the production methods introduced up till a �xed time v, such that the set of
vintages associated with the old technology is Vo = (�1; v]. The new technology consists
of the newest production methods, invented after v, such that it covers Vn = [v; t].
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Final output is competitively produced using a CES production function of the form:

(4) Y =

0@ X
�2fo;ng

Y
1
�
�

1A�

, where Y� =

0@Z
V�

Y
1
�
v dv

1A�

.

To accommodate derivations below, we de�ne associated TFP aggregates as:

(5) A =

0@ X
�2fo;ng

A
1

��1
�

1A��1

, where A� =

0@Z
V�

Z
1

��1
v dv

1A��1

.

Capital goods production and technology adoption:
Capital goods are produced by monopolistic competitors. Each of them holds the patent
of the capital good used for a particular production method. It takes one unit of �nal
output to produce one unit of capital of any vintage. This production process is assumed
to be fully reversible. For simplicity, we assume that there is no physical depreciation of
capital. The capital goods suppliers rent out their capital goods at the rental rate Rv.

Technology adoption costs:
In order to become the sole supplier of a particular capital vintage, the capital good pro-
ducer must undertake an investment, in the form of an up-front �xed cost. We interpret
this investment as the adoption cost of the production method associated with the capital
vintage.

The cost of adopting vintage v at instant t is assumed to be:

(6) �vt = 	(1 + b)

�
Zv
Zt

� 1+#
��1

�
Zt
At

� 1
��1

Yt, where # > 0.

Here, the constant 	 is the steady-state stock market capitalization to GDP ratio4 and
is included for normalization purposes. The parameter b re�ects barriers to adoption
in the sense of Parente and Prescott (1994). The term (Zv=Zt)

1+#
��1 captures the idea

that it is more costly to adopt technologies the higher is their productivity relative to
the productivity of the frontier technology. The last two terms capture that the cost of
adoption is increasing in the market size.

We choose this functional form because, just like the adoption cost function in Parente
and Prescott (1994), it yields the existence of an aggregate balanced growth path. As we
shall see below, on this balanced growth path, the value of adopting a technology is also
linear in the market size. As a result, adoption lags are constant and we can separately
identify the intensive and extensive margins of adoption.5

4 In particular, 	 = �
�

1�
�+ 


��1

� .
5 It could of course be the case that the linearity in the adoption cost function is violated for some

particular technology for some particular country, without necessarily violating balanced growth, but to
the extent that we are documenting adoption lags across many technologies this is perhaps not so critical.
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C. Factor demands, output, and optimal adoption

Intermediate goods demand :
The demand for the output produced with vintage v is:

(7) Yv = Y (Pv)
� �
��1 , where P =

�Z
v2V

P
� 1
��1

v dv

��(��1)
.

We use the �nal good as the numeraire good throughout our analysis and normalize
its price to P = 1. Labor is homogenous, competitively supplied, and perfectly mobile
across sectors. Since Yv is produced competitively, its price equals its marginal cost of
production. The revenue share of labor is (1� �) and the rental costs of capital exhaust
the remaining revenue.

Capital goods demands and rental rates:
The supplier of each capital good recognizes that the rental price he charges for the capital
good, Rv, a¤ects the price of the output associated with the capital good and, therefore,
its demand, Yv. The resulting demand curve faced by the capital good supplier is

(8) Kv = Y Z
1

��1
v

�
(1� �)
W

� 1��
��1

�
�

Rv

��
, where � � 1 + �

�� 1 .

Here, � is the constant price elasticity of demand that the capital goods supplier faces. As
a result, the pro�t maximizing rental price equals a constant markup times the marginal
production cost of a unit of capital.
Because of the durability of capital and the reversibility of its production process, the

per-period marginal production cost of capital is the user-cost of capital. Thus, the rental
price that maximizes the pro�ts accrued by the capital good producer is

(9) Rv = R =
�

�� 1er,
where �

��1 is the constant gross markup factor.

Aggregate output and inputs:
We obtain the following aggregate production function representation:

(10) Y = AK�L1��, where K �
Z t

�1
Kvdv and L �

Z t

�1
Lvdv.

Just like for the underlying capital vintage speci�c outputs, the labor share is (1� �)
and the capital share is the rest.

Optimal adoption:
The �ow pro�ts that the capital goods producer of vintage v earns are equal to

(11) �v =
�

�
PvYv =

�

�

�
Zv
A

� 1
��1

Y .

The market value of each capital goods supplier equals the present discounted value of
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the �ow pro�ts. That is,

(12) Mv;t =

Z 1

t

e�
R s
t
ers0ds0�vsds =

�
Zv
Zt

� 1
��1

�
Zt
At

� 1
��1

	tYt.

Here

(13) 	t =
�

�

Z 1

t

e�
R s
t
ers0ds0 �At

As

� 1
��1

�
Ys
Yt

�
ds

is the stock market capitalization to GDP ratio.6

Optimal adoption implies that, every instant, all the vintages for which the value of
the �rm that produces the capital good is at least as large as the adoption cost will be
adopted. That is, for all vintages, v, that are adopted at time t,

(14) �v �Mv.

This holds with equality for the best vintage adopted if there is a positive adoption lag.7

The adoption lag that results from this condition equals

(15) Dv = max

�
�� 1

#

�
ln (1 + b)� ln	 + ln	

	
; 0

�
= D

and is constant across vintages, v. At this point it is important to distinguish between
two types of factors: the ones that don�t a¤ect adoption lags and the ones that do.
First, given the speci�cations of the production function and the cost of adoption, the

market size symmetrically a¤ects the bene�ts and costs of adoption. Hence, variation in
market size does not a¤ect the timing of adoption, i.e. the adoption lags. Note also that,
since on the balanced growth path 	 = 	, the steady-state adoption lags do not depend
on aggregate TFP or GDP for the same reason. As we shall see below, these variables
and others that a¤ect the market size do a¤ect how many units of a speci�c vintage are
demanded once it has been adopted, i.e. the intensity of adoption.
Second, factors that distort the returns to capital, such as taxes on the rental price of

capital, taxes on the operating pro�ts of capital goods producers, or the expropriation
risk they face by the government all a¤ect adoption lags and can be interpreted as being
captured by b.8

The resulting aggregate TFP level equals

(16) At = A0e

(t�Dt),

where A0 > 0 is a constant that depends on the model parameters.9 Hence, aggregate
TFP in this model is endogenously determined by the adoption lags induced by the

6This can be interpreted as the stockmarket capitalization if all monopolistic competitors are publicly
traded companies.

7 If the frontier vintage, t, is adopted and there is no adoption lag then �t� � Mt� . For simplicity,
we ignore the possibility that, for the best vintages, already adopted �v� > Mv� . In that case, no new
vintages are adopted. This possibility is included in the mathematical derivations in the online Appendix.

8We illustrate this point with a detailed mathematical example in the online Appendix.
9 In particular A0 = Z0

�
��1



���1
.
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barriers to entry.
Moreover, the total adoption costs across all vintages adopted at instant t equal

(17) � = 	(1 + b)

�



�� 1

�
e�

#
��1
DY

�
1�

�
D

�
,

where
�
D denotes the time derivative of the adoption lags.

D. Equilibrium and di¤usion of the new technology

The equilibrium path of the aggregate resource allocation in this economy can be
de�ned in terms of the following eight equilibrium variables fC;K; I;�; Y; A;D; V g. Just
like in the standard neoclassical growth model, the capital stock, K, is the only state
variable. The eight equations that determine the equilibrium dynamics of this economy
are given by:
(i) The consumption Euler equation.

(ii) The aggregate resource constraint10

(18) Y = C + I + �.

(iii) The capital accumulation equation

(19)
�
K = ��K + I.

(iv) The production function, (10), taking into account that in equilibrium L = 1.

(v) The adoption cost function, (17).

(vi) The technology adoption equation, (15), that determines the adoption lag.

(vii) The stock market to GDP ratio, (13).

(viii) The aggregate TFP level, (16).

The steady state growth rate of this economy is 
= (1� �).11

Di¤usion of the new technology :
The focus of our analysis of technology di¤usion is not on the aggregates, but rather on
the demand for capital goods and the output produced with the production methods that
make up the new technology � = n.
We can express output produced with technology � in the following Cobb-Douglas form

(20) Y� = A�K
�
� L

1��
� , where K� �

Z
v2V�

Kvdv, L� �
Z
v2V�

Lvdv,

where A� is de�ned in (5).

10We assume that adoption costs are measured as part of �nal demand, such that Y can be interpreted
as GDP.

11We derive the balanced growth path and approximate transitional dynamics of this economy in the
online Appendix.
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The price of the intermediate good equals the marginal cost of production, which is
given by

(21) P� =
1

A�

�
Y

L

�1���
R

�

��
.

while demand equals

(22) Y� = Y (P� )
� �
��1 ,

and the rental cost share of capital is equal to �, such that

(23) RK� = �P�Y� .

Most importantly, the endogenous level of TFP for technology � = n at time t can be
expressed as

(24) An =

�
�� 1



���1
Zv e
(t�Dt�v)| {z }

embodiment e¤ect

h
1� e�


�
��1 (t�Dt�v)

i��1
| {z }

variety e¤ect

.

From this equation, it can be seen that our model introduces two mechanisms by which
the adoption lags, D� , a¤ect the level of TFP in the production of intermediate good � :
(i) the embodiment e¤ect ; and (ii) the variety e¤ect.
First, as newer vintages with higher embodied productivity are adopted in the econ-

omy, the level of embodied productivity increases. This mechanism is captured by the
�embodiment e¤ect� term of (24) which re�ects the productivity embodied in the best
vintage adopted in the economy.
Second, the range of vintages available for production also a¤ects the level of embodied

productivity of the new technology. An increase in the measure of vintages adopted leads
to higher productivity through the gains from variety. This is captured by the �variety
e¤ect�term in expression (24). In particular, when the number of vintages in use is very
small, an increase in this number has a relatively large e¤ect on embodied productivity.
As this number increases, the productivity gains from an additional vintage decline. Thus,
the variety e¤ect leads to a non-linear trend in the embodied productivity level.
Hence, adoption lags a¤ect the evolution of the TFP of the new technology. This

TFP level in turn determines the relative price of the new technology and, through that,
governs the speed of di¤usion as well as the shape of its di¤usion curve. The curvature of
this shape is driven by the variety e¤ect. Since the measure of varieties adopted depends
on the adoption lag, the curvature of the di¤usion curve allows us to identify the adoption
lag in the data.

II. Empirical application

Our aim is to estimate the adoption lags for di¤erent technology-country pairs. We do
so by using the main insight from the one-sector model, namely that adoption lags drive
the curvature in our measures of technology di¤usion. We have data for more than one
technology. We therefore extend the results above to include many sectors, each adopting
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a new technology that corresponds to a technology for which we have data.12 To make
our estimation feasible, we assume that the economy is in steady state, such that adoption
lags are constant over time. They may di¤er across countries and technologies, however.
In this section, we describe our measures of technology di¤usion, discuss the extension

of the one-sector model, derive the reduced form equations, and describe the method we
use to estimate these equations.

Measures of di¤usion

The empirical literature on technology di¤usion, following the seminal contributions of
Griliches (1957) and Mans�eld (1961), has mainly focused on the analysis of the share
of potential adopters that have adopted a technology. Such shares capture the extensive
margin of adoption. Computing these measures requires micro level data that are not
available for many technologies and countries. As a result, over the last 50 years, the
di¤usion of relatively few technologies in a very limited number of countries has been
documented.
Our model allows us to explore its predictions for alternative measures of technology

di¤usion for which data are more widely available. In particular, we focus on (i) Y� , the
level of output of the intermediate good produced with technology � ; (ii) K� , the capital
inputs used in the production of this output.
These variables have two advantages over the traditional measures. First, they are

available for a broad set of technologies and countries. Second, they capture the number
of units of the new technology that each of the adopters has adopted. This intensive
margin is important to understand cross-country di¤erences in adoption patterns. For
spindles, for example, Gregory Clark (1987) argues that this margin is key to under-
standing the di¤erence in labor productivity between India and Massachusetts in the
Nineteenth century.
One of the key �ndings of the empirical di¤usion literature is that adoption measures

that only capture the extensive adoption margin follow an S-shape curve. Our model is
broadly consistent with this observation. S-shape curves, however, provide a poor ap-
proximation of the evolution of technology measures that incorporate both the extensive
and intensive adoption margins (Comin, Hobijn and Rovito, 2008). A natural question
is what type of functional form provides a parsimonious representation of these di¤usion
curves. Our model provides a candidate representation which is parsimonious and does
a satisfactory job �tting the data.

A. Reduced form equations

To allow for multiple sectors, we use a nested CES aggregator, where �
��1 re�ects

the between-sector elasticity of demand and �
��1 is, just as in the one-sector model,

the within-sector elasticity of demand. Further, we allow the growth rate of embodied
technological change, 
� , and the invention date, v� , to vary across technologies. We
denote the technology measures for which we derive reduced form equations by m� 2
fy� ; k�g. Small letters denote logarithms.
By replacing the within sector demand elasticity with the between sector elasticity in

the demand equation (22), we obtain the log-linearized demand equation

(25) y� = y �
�

� � 1p� .

12 In a previous version of this paper, i.e. Comin and Hobijn (2008), we derive such an extension in
detail.
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Combining that with the intermediate goods price (21)

(26) p� = �� ln�� a� + (1� �) (y � l) + �r,

we obtain the reduced form equation (27) for y� :

(27) y� = y +
�

� � 1 [a� � (1� �) (y � l)� �r � � ln�] .

Similarly, we obtain the reduced form equation for k� by combining the log-linear
capital demand equation

(28) k� = ln�+ p� + y� � r

with (25) and (26). These expressions depend on the adoption lag D� ; through the e¤ect
the lag has on a� :
They also contain the rental rate, r, for which we do not have data. The constant

adoption lags for each country and technology over time that we estimate mean that we
assume that the economies are close to steady state and that r is approximately constant
over time. Consistent with this, we present our estimates for the case of a constant rental
rate, where r is part of the constant term that we estimate.
We could estimate the reduced form equations (27) and (28). However, to a �rst order

approximation, 
� only a¤ects y� and k� through a linear trend. More speci�cally, in the
mathematical Appendix, we log-linearize (24) around 
� = 0 to obtain the approximation

(29) a� � zv� + (�� 1) ln (t� T� )�

�
2
(t� T� ) ,

where T� = v� +D� is the time that the technology is adopted.
In this approximation, the growth rate of embodied technological change, 
� , only

a¤ects the linear trend in a� . Intuitively, when there are very few vintages in V� the
growth rate of the number of vintages, i.e. the growth rate of t � T� , is very large and
it is this growth rate that drives growth in a� through the variety e¤ect. Only in the
long-run, when the growth rate of the number of varieties tapers o¤, the growth rate of
embodied productivity, 
� , becomes the predominant driving force over the variety e¤ect.
Then, as we derive in the mathematical Appendix, the reduced form equation that we

estimate is the same for both capital and output measures and is of the form

(30) m� = �1 + y + �2t+ �3 ((�� 1) ln (t� T� )� (1� �) (y � l)) + "� ,

where "� is the error term. The reduced form parameters are given by the ��s. We do not
estimate � and �. Instead, we calibrate � = 1:3, based on the estimates of the markup in
manufacturing from Susanto Basu and John G. Fernald (1997), and � = 0:3 consistent
with the post-war U.S. labor share.

B. Identi�cation of adoption lags and estimation procedure

We use the reduced form equations to estimate country-technology-speci�c adoption
lags. For this purpose, we make the following three assumptions: (i) Levels of aggregate
TFP, relative investment prices, and units of measurement of the technology measures
potentially di¤er across countries; (ii) growth rates of embodied technological change, the
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relative price per unit of capital, and of aggregate TFP, are the same across countries;
(iii) technology parameters are the same except for the adoption lags.
In order to see how these assumptions translate into cross-country parameter restric-

tions, we consider which structural parameters a¤ect each of the reduced form parameters.
The �xed e¤ect, �1, captures four things (i) the units of the technology measure; (ii) dif-
ferent TFP levels across countries; (iii) di¤erences in adoption lags; and (iv) the level of
the relative price of investment goods, which we have abstracted from in our derivations
but would a¤ect capital demand and output levels. Because we assume that these things
can vary across countries, we let �1 vary across countries as well. The trend-parameter,
�2, is assumed to be constant across countries because it only depends on the output
elasticity of capital, �,13 and on the trend in embodied technological change.14 �3 only
depends on the technology parameter, �, and is therefore also assumed to be constant
across countries.
Given these cross-country parameter restrictions, the adoption lags, D� ; are identi�ed

in the data through the non-linear trend component in equation (30), which re�ects the
variety e¤ect. This is the only term a¤ected by the adoption lag, D� . It is also the only
term which a¤ects the curvature of m� after controlling for the e¤ect of observables such
as (per capita) income. Speci�cally, it causes the slope in m� to monotonically decline
in the time since adoption. This is the basis of our empirical identi�cation strategy of
D� . Intuitively, our model predicts that, everything else equal, if at a given moment in
time we observe that the slope in m� is diminishing faster in one country than another, it
must be because the former country has started adopting the technology more recently.
Note that, with this identi�cation scheme, we are not using the level of adoption to

identify the adoption lags. The intensive margin of adoption can be measured by the
country-technology �xed e¤ect �1 in (30), which is a¤ected by the level of TFP and the
relative price of capital. In our model, these factors do not a¤ect the timing of adoption,
i.e. the extensive margin, but a¤ect the intensity of adoption instead.
Because the adoption lag is a parameter that enters non-linearly in (30) for each coun-

try, estimating the system of equations for all countries together is practically not feasible.
Instead, we take a two-step approach. We �rst estimate equation (30) using only data
for the U.S. This provides us with estimates of the values of �1 and D� for the U.S. as
well as estimates of �2 and �3 that should hold for all countries. In the second step, we
separately estimate �1 and D� , using (30) and conditional on the estimates of �2 and �3
based on the U.S. data, for all the countries in the sample besides the U.S.
Besides practicalities, this two-step estimation method is preferable to a system estima-

tion method for two other reasons. First, in a system estimation method, data problems
for one country a¤ect the estimates for all countries. Since we judge the U.S. data to be
most reliable, we use them for the inference on the parameters that are constant across
countries. Second, our model is based on a set of stark neoclassical assumptions. These
assumptions are more applicable to the low frictional U.S. economic environment than to
that of countries in which capital and product markets are substantially distorted. Thus,
we think that our reduced form equation is likely to be misspeci�ed for some countries
other than the U.S. Including them in the estimation of the joint parameters would a¤ect
the results for all countries.
We estimate all the equations using non-linear least squares. Since we estimate �3 for

the U.S., this means that our identifying assumption is that the logarithm of per capita

13The output elasticity of capital is one minus the labor share. Douglas Gollin (2002) provides evidence
that the labor share is approximately constant across countries.

14 In a more general model it also depends on the growth rate of the relative price per unit of capital.
This is the reason that we do not use the trend parameter �2 to identify the growth rate of embodied
technological change in the data.
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GDP in the U.S. is uncorrelated with the technology-speci�c error, "� . However, because
of the cross-country restrictions we impose on �3 this risk of simultaneity bias is not a
concern for all the other countries in our sample.
Because we derive the reduced form equations from a structural model, the theory pins

down the set of explanatory variables. However, even if one takes the theory as given,
there are, of course, several potential sources of bias in our estimates. We discuss some
of these sources and check for the robustness of our results after we present our results
in the following section.

III. Results

We consider data for 166 countries and 15 technologies, that span the period from
1820 through 2003. The technologies can be classi�ed into 6 categories; (i) transporta-
tion technologies, consisting of steam- and motorships, passenger and freight railways,
cars, trucks, and passenger and freight aviation; (ii) telecommunication, consisting of
telegraphs, telephones, and cellphones; (iii) IT, consisting of PCs and internet users; (iv)
medical, namely MRI scanners; (v) steel, namely tonnage produced using blast oxygen
furnaces; (vi) electricity.
The technology measures are taken from the CHAT dataset, introduced by Comin

and Hobijn (2004) and expanded by Comin, Hobijn, and Rovito (2006). Real GDP and
population data are from Angus Maddison (2007). The data Appendix contains a brief
description of each of the 15 technology variables used and lists their invention dates.
Unfortunately, we do not have data for all 2490 country-technology combinations. For

our estimation, we only consider country-technology combinations for which we have
more than 10 annual observations. There are 1278 such pairs in our data set. The third
column of Table 1 lists, for each technology, the number of countries for which we have
enough data.

A. Estimated adoption lags

For each of the 15 technologies, we perform the two-step estimation procedure outlined
above. We divide the resulting estimates into three main groups: (i) plausible and precise,
(ii) plausible but imprecise, and (iii) implausible.
We consider an estimate implausible if our point estimate implies that the technology

was adopted more than 10 years before it was invented. The 10 year cut o¤ point is to
allow for inference error. The sixth column of Table 1 lists the number of implausible
estimates for each of the technologies. In total, we �nd implausible estimates in a bit less
than one-third, i.e. 396 out of 1278, of our cases.
We have identi�ed three main reasons why we obtain implausible estimates. First, as

mentioned above, the adoption year T� is identi�ed by the curvature in the time-pro�le of
the adoption measure. However, for some countries the data is too noisy to capture this
curvature. In that case, the estimation procedure tends to �t the �atter part of the curve
through the sample and infers that the adoption date is far in the past. Second, for some
countries the data exhibit a convex technology adoption path rather than the concave one
implied by our structural model. This happens, for example, in some African countries
that have undergone dramatic events such as decolonization or civil wars. Third, for some
countries we only have data long after the technology is adopted. In that case ln (t� T� )
exhibits little variation and T� is not very well-identi�ed in the data. This can either lead
to an implausible estimate of T� or a plausible estimate with a high standard error.
Plausible estimates with high standard errors are considered plausible but imprecise.15

15 In particular, the cuto¤ that we use is that the standard error of the estimate of T� is bigger than
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The number of plausible but imprecise estimates can be found in the �fth column of
Table 1. They make up 52 out of the 1278 cases that we consider.
The cases that are neither deemed implausible nor imprecise are considered plausible

and precise. The fourth column of Table 1 reports the number of such cases for each
technology. These represent 65 percent of all the technology-country pairs. Hence, our
model, with the imposed U.S. parameters, yields plausible and precise estimates for the
adoption lags for two-thirds of the technology-country pairs. All our remaining results
are based on the sample of 830 plausible and precise estimates.16

Included in these plausible and precise estimates are 15 estimates of adoption lags
for the U.S. Because we impose restrictions based on U.S. parameter estimates across
countries, we plot the �t of our model for the 15 technologies for the U.S. in Figures 2
and 3. As can be seen from these �gures, the model captures the curvature in m� , which
identi�es the adoption lags, well for all of these technologies.
Before we summarize the results for these 830 estimates, it is useful to start with

an example. Figure 4 shows the actual and �tted paths of m� for tonnage of steam
and motor merchant ships for Argentina, Japan, Nigeria, and the U.S. The estimated
adoption years, T� , of steam and motorships for these countries are 1852, 1901, 1957, and
1817, respectively. This means that, on average over the sample period, the pattern of
U.S. steam and motor merchant ship adoption is consistent with a 1817 adoption date,
according to our model. Given that the �rst steam boat patent in the U.S. was issued in
1788, we thus estimate that the U.S. adopted the innovations that enabled more e¢ cient
motorized merchant shipping services with an average lag of 29 years.
Given the estimates of �2 and �3 based on the U.S. data, the adoption years are

identi�ed through the curvature of the path of m� . The U.S. path is already quite �at
in the early part of the sample. This indicates an early adoption, i.e. a low T� , and
a short adoption lag. When we compare the U.S. and Argentina, we see that, in most
years the path is more steep for Argentina than for the U.S. This is why we �nd a later
adoption date and a longer adoption lag for Argentina than for the U.S. Since Japan�s
path is even steeper than that of Argentina, the lag for Japan is even longer. A similar
analysis reveals why we �nd the 1957 adoption date for Nigeria.
Comparing the data for Argentina and Japan also reveals another part of our identi-

�cation strategy. Our focus is on the set of vintages in use and not on how many units
of each vintage are in use. In our theoretical framework, the latter, i.e. the intensive
margin, is determined by the country-wide level of TFP and capital deepening, not by
the adoption cost. A country that uses more units of each vintage will have a higher level
of m� , which is the case for Japan relative to Argentina in Figure 4.
The R2�s associated with the estimated equations for tonnage of steam and motor

merchant ships for Argentina, Japan, Nigeria, and the U.S. are 0.94, 0.04, 0.82, and 0.89,
respectively. The R2 for Japan is very low because our model does not �t the almost
complete destruction of the Japanese merchant �eet during WWII. The other R2s are
not only high because the model captures the trend in the adoption patterns but also
because the model captures the curvature.
The last three columns of Table 1 summarize the properties of the R2�s for the 830

plausible and precise estimates. Since we are imposing the US estimates for �2 and �3,
the R2 can be negative. The second to last column of Table 1 lists the number of cases
for which we �nd a positive R2 for each technology.
In total, we �nd negative R2�s for only 6.7 percent of the cases. Passenger railways

and telegraphs are the two technologies where negative R2�s are most prevalent. This

p
2003� v� . This allows for longer con�dence intervals for older technologies with potentially more

imprecise data.
16Results that also include the imprecise estimates are very similar to the ones presented here.
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means that for those technologies the assumption that the U.S. estimates for �2 and �3
apply for all countries seems unrealistic. Both of these are technologies that have seen
a decline in the latter part of the sample for the U.S. Such declines lead to estimates of
the trend parameter, �2, for the U.S. that do not �t the data for countries where these
technologies have not seen such a decline (yet). Though present, such issues do not seem
to be predominant in our results.
The next to last and last columns of Table 1 list the sample mean and standard

deviations of the distributions of positive R2�s for each technology. Overall, the average
R2, conditional on being positive, is 0.81 and the standard deviation of these R2�s is
0.20. Hence, even though we impose U.S. estimates for �2 and �3 across all countries,
the simple reduced form equation, (30), derived from our model captures the majority of
the variation in m� over time for the bulk of the country-technology combinations in our
sample.
We turn next to the estimates of the adoption lags. The main summary statistics

regarding these estimates are reported in Table 2. The average adoption lag in our
sample is 45 years with a median lag of 32. This means that the average adoption path
of countries in our sample over all technologies is similar to that of a country that adopts
the technology 45 years after its invention.
However, there is considerable variation both across technologies and countries. For

steam- and motorships as well as railroads we �nd that it took about a century before
they were adopted in half of the countries in our sample. This is in stark contrast with
PCs and the internet, for which it took less than 15 years for half of the countries in our
sample to adopt them.
Though we do not impose it, we �nd that the percentiles of the estimated adoption lags

are similar for closely related technologies: passenger and freight rail transportation, cars
and trucks, passenger and cargo aviation, and even for the upper percentiles of telegraphs
and telephones.
Table 3 decomposes the variations in adoption lags into parts attributable to country

e¤ects and parts due to technology e¤ects. Let i be the country index and let Di� be
the adoption lag estimated for country i and technology � . Table 3 contains the variance
decomposition based on three regressions nested in the speci�cation

(31) Di� = D
�
i +D

�
� + ui� ,

where D�
i is a country �xed e¤ect, D

�
� is a technology �xed e¤ect, and ui� is the residual.

The �rst line of the table pertains to (31) with only country �xed e¤ects. Country-
speci�c e¤ects explain about 31 percent of the variation in the estimated adoption lags.
Technology-speci�c e¤ects explain about twice as much, namely 65 percent, of the varia-
tion. This can be seen from the second row of Table 3, which is computed from a version
of regression (31) with only technology �xed e¤ects. The last row of Table 3 shows that
country and technology �xed e¤ects jointly explain about 83 percent of the variation in
the estimated adoption lags. Of this, 18 percent can be directly attributed to country
e¤ects, 53 percent can be directly attributed to technology e¤ects, and the remaining 12
percent is due to the covariance between these e¤ects that is the result of the unbalanced
nature of the panel structure of our data.
Understanding the determinants of adoption lags is beyond the goals of this paper.

However, we do consider whether adoption lags tend to have gotten smaller over time.
To this end, Figure 5 plots the invention date of each technology, v� , against the average
adoption lag by technology as well as against the technology �xed e¤ects, D�

� , obtained
from (31). The message from both variables is the same. Newer technologies have di¤used
much faster than older technologies. In particular, technologies invented ten years later
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are on average adopted 4.3 years faster.
This �nding is remarkably robust. As is clear from Figure 5, the average adoption lags

of all 15 technologies covered in our dataset seem to adhere to this pattern. Moreover, the
slope before and after 1950 is almost the same. Hence, the acceleration of the adoption
of technologies seems to have started long before the digital revolution or the post-war
globalization process.
Of course, this trend cannot go on forever. However, it has gone on at this pace for

200 years. If it persists, it will have major consequences for the cross-country di¤erences
in TFP due to the lag in technology adoption. In particular, the TFP gap between rich
and poor countries due to the lag in technology adoption should be signi�cantly reduced.

Robustness

Our results are robust to alternative assumptions in the underlying model as long as
these do not a¤ect the non-linear part of equation (30). Most of the relevant variations
in the underlying assumptions only a¤ect the interpretation of the intercept (�1) and
slope (�2) parameters which we do not use to identify the adoption lags. For example, as
shown in Comin and Hobijn (2008), a model with investment speci�c technological change
yields similar reduced form equations but with a di¤erent interpretation of which sources
of growth determine the trend. Any distortions that reduce output in the economy at
a constant rate over time only a¤ect �1 and do not a¤ect the adoption lag parameter.
Capital depreciation and population growth also do not a¤ect the interpretation of �3
and the curvature of the di¤usion curves.17

The main assumption we use to identify the adoption lags is that the curvature of
the di¤usion curve is the same across countries. We explore the empirical validity of
this assumption in two ways. For both of these approaches we reestimate equation (30)
without imposing the U.S. estimate of the curvature parameter, �3, and then compare
the unrestricted estimate of �3, which we denote by �

u
3 , with the U.S. estimate.

First, we formally test whether �3 in each country is equal to that for the U.S. Table 4
presents the results of the t-test for the null that �3 = �

u
3 in the country-technology pairs

where we obtained a plausible and precise estimate of the adoption lags in the restricted
estimation: The third column reports, for each technology, the percentage of cases where
we cannot reject the null that the curvature is the same as in the U.S at a 5 percent
signi�cance level. This occurs in 69 percent of the cases.
Second, we compare the adoption lags estimated using the restricted and unrestricted

models. This is done in the last column of Table 4. It contains the correlation between the
adoption lags estimates from the restricted and unrestricted estimations. The weighted
average of the correlation across technologies is 0.80. By technologies, the correlations
range from 0.41 for computers to 0.99 for steam and motorships. The conclusion we draw
from these results is that allowing for di¤erences in the curvature has little e¤ect on the
estimated adoption lags.
In addition to validating our identi�cation assumption, the test reduces the scope

for other factors to be signi�cant sources of variation in the curvature of the di¤usion
curves for our technologies. For example, one could be concerned about the possibility
that a reduction in the costs of adoption, say, driven by pro-adoption policies could be
generating the curvature. It is however very unlikely that policy changes that, in principle,
are independent across countries led to curvatures so similar as the ones observed in the
data. Furthermore, these results indicate that our assumption that adoption lags for each
technology in a country are relatively constant over time is not rejected in the data.

17Our estimates turn out to be robust to the calibration of � and � as well as to the steady-state and
log-linear approximations that we applied.
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B. Case studies

Thus far, we have focused on computing statistics that re�ect the broad patterns of
technology adoption. Next we explore the estimates in more detail. Table 5 reports, for
each technology, the average adoption lag for di¤erent groups of countries in deviation
from the average adoption lag for the technology.
Consistent with equation (16), countries with high per capita income at one point in

time are countries with shorter adoption lags. This is the case of the US, the UK, other
OECD countries and some Latin America countries (such as Chile and Argentina) before
1950. Similarly, countries with longer than average adoption lags are also countries with
lower per capita income. This is the case for Sub-Saharan African countries and for Latin
American countries after 1950.
The two cases that have generated most controversy are the growth experiences of

Japan and the East Asian Tigers. We see next whether the history of technology adoption
captured by our estimated adoption lags can shed some light on these �miracles.�

Japan

Until the Meiji restoration in 1867, Japan had an important technological gap with the
western world. This is re�ected in the Japanese adoption lag in steam and motor ships
which is much longer than that in other OECD countries and is comparable to the lags
in Latin America. Technological backwardness, surely, was a signi�cant determinant of
the development gap between Japan and other (now) industrialized countries; in 1870,
Japan�s real GDP per capita was 42 percent of the OECD average.
The industrialization process that was catalyzed by the Meiji restoration closed Japan�s

technological gap with the Western world. This is re�ected by Japan�s adoption lags
for the technologies invented in the second half of the Nineteenth Century, which are
comparable to the lags in other OECD countries. The closing of the technology gap also
diminished the development gap. By 1920, per capita GDP in Japan was 56 percent of
the OECD average. For those technologies invented in the Twentieth Century, Japan�s
adoption lag was signi�cantly shorter than for the OECD average and it was comparable
to the U.S. For blast oxygen steel, for example, the adoption lag that we estimate for
Japan is 5 years shorter than for other OECD countries. By 1980 Japan�s per capita
income was 26 percent higher than the OECD average and 33 percent lower than the
U.S.
The estimated adoption lags for Japan thus seem to suggest that a large part of Japan�s

phenomenal rise in living standards between 1870 and 1980 involved closing the gap
between the range of technologies Japan used and those used by the world�s industrialized
leaders.

East Asian Tigers

Japan�s phenomenal rise was outdone in the second half of the Twentieth Century by
the East Asian Tigers (EATs): Hong Kong, Korea, Taiwan and Singapore. These four
countries experienced growth in per capita GDP between 1960 and 1995 of around 6
percent per year.
There is disagreement about the sources of this growth. Alwyn Young (1995) claims

that factor accumulation is the main source of growth in the EATs, while Chang-Tai
Hsieh (2002) challenges this view and argues that the TFP growth experienced by the
EATs is underestimated by Young (1995).18

18More speci�cally, According to Hsieh (2002), TFP growth was 2.2% in Singapore (vs. -0.7 for Young
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Whether or not adoption lags show up as TFP or factor accumulation di¤erentials
depends on the extent to which capital stock data are quality adjusted. However, what
we can say, based on our estimates, is that, just like for Japan, the growth spurt of the
EATs has been associated with a substantial reduction in their technology adoption lags.
From Table 5, it is clear that the EATs had long adoption lags for early technologies.

In particular, for technologies invented before 1950, the EATs�adoption lags were often
longer than in Sub-Saharan Africa, and almost always longer than in Latin America. For
newer technologies, however, the EAT�s adoption lags are shorter than in Latin America
and Sub-Saharan Africa. In fact, EATs adopted technologies invented since 1950 about
as fast as OECD countries.
Young (1992) focuses on the sources of growth in Singapore and Hong Kong and argues

that the lower TFP growth rate observed in Singapore re�ects its faster rate of struc-
tural transformation towards the production of electronics and services, which did not
allow agents to learn how to e¢ ciently use older technologies. Some of the post-1950
technologies in our data set such as computers, cellphones, and the internet are surely
signi�cant for the production of both electronics and services. Hence, an implication of
Young�s hypothesis would be that the Singaporean adoption lags in these technologies
are shorter than in Hong Kong. This is not what we �nd. Singapore and Hong Kong
are estimated to have the same adoption lags in PCs and the internet, 14 and 7 years
respectively. Hong Kong is estimated to have adopted cellphones three years earlier than
Singapore.

C. Development accounting

We conclude our analysis by exploring whether the adoption lags that we have esti-
mated are a signi�cant source of cross-country di¤erences in per capita income. To answer
this question, we have to approximate the aggregate e¤ect of the estimated adoption lags
for the 15 technologies on per capita GDP levels. We do so by using the equilibrium
results of our one-sector growth model. If the only source of cross-country di¤erentials
in per capita GDP is adoption lags, then, in steady state, the log di¤erence of country
i�s level of real GDP per capita with that of the U.S. is given by

(32) (yi � l)� (yUS � l) =



1� � (DUS �Di) ,

where 
 is the growth rate of aggregate TFP, which is 1.4% for the U.S. private business
sector during the postwar period.19 We observe the left hand side of (32) in our data and
approximate the right hand side in the following way. We use 
 = 0:014 and � = 0:3,
consistent with postwar U.S. data. Moreover, we use the country �xed e¤ects from (31)
to approximate Di � D�

i . Hence, we assume that the country-speci�c adoption lags we
have estimated for each country using our sample of technologies are representative of
the average adoption lags across all the technologies used in production.
Figure 6 plots the data for both sides of (32) for 123 countries in our dataset. The

correlation between the two sides is 0.55. The solid line is the regression line while
the dashed line is the 45�-line. The slope of the regression line is about 0.25, which
implies that our model and estimates explain about one fourth of the log per capita GDP
di¤erentials observed in the data.

(1995)), 3.7% in Taiwan (vs. 2.1% for Young), 1.5% in Korea (vs. 1.7% for Young) and 2.3% in Hong
Kong (vs. 2.7% for Young).

19Our empirical analysis is based mostly on technologies that are embodied in physical capital. How-
ever, it is reasonable to think that there are similar lags in the adoption of disembodied technologies.
Hence, our calibration of 
 to match overall TFP growth.



VOL. VOL NO. ISSUE TECHNOLOGY DIFFUSION 19

The model seems to explain a much larger part of per-capita income di¤erentials for
high-income industrialized countries that make up the set of observations in the upper-
right corner of the �gure. This may result from a downward bias in our estimates of D�

i
for the poor countries in our sample. Speci�cally, due to lack of data and/or plausible
estimates for older technologies in poor countries, these technologies, which tend to be
adopted more slowly, do not a¤ect the estimate of D�

i for poor countries. This may
result in a downward bias of the average adoption lag for poor countries and in a lower
cross-country dispersion in adoption lags and in TFP di¤erentials due to di¤erences in
adoption.
In conclusion, our empirical exploration shows that adoption lags account for a sub-

stantial share of cross-country per capita income di¤erences. The share they account for
seems to be at least 25 percent, if not more.

IV. Conclusion

In this paper we have built and estimated a model of technology di¤usion and growth
that has two main characteristics. First, at the aggregate level, it is similar to the one-
sector neoclassical growth model and has a well-de�ned balanced growth path. Second,
at the disaggregate level, it has implications for the path of observable measures of tech-
nology adoption, such as the number of units of capital that embody a given technology
or the output produced with this technology.
The main focus of our analysis is on adoption lags. These lags are de�ned as the length

of time between the invention and adoption of a technology. Our model provides a theo-
retical framework that links the adoption lag of a technology to the level of productivity
embodied in the capital associated with it. It also relates the path of the observable
technology adoption measures over time to the path of embodied productivity and to
economy-wide factors driving aggregate demand. The adoption lag determines the shape
of a non-linear trend in embodied productivity as well as in the path of the technology
measures. It is this non-linear trend term that allows us to identify adoption lags in the
data.
We estimate adoption lags for 15 technologies and 166 countries over the period 1820-

2003. Our model does a good job in �tting the di¤usion curves. For two thirds of the
technology-country pairs we obtain precise and plausible estimates of the adoption lags.
In light of this result, we conclude that our model of di¤usion provides an empirically
relevant micro-foundation for a new set of measures of technology di¤usion that are more
comprehensive and easier to obtain than the measures used in the traditional empirical
di¤usion literature.
We obtain three key �ndings. The �rst is that adoption lags are large, 45 years on

average, and vary a lot. The standard deviation is 39 years. Most of this variation is
due to technology-speci�c variation, which contributes more than half of the variance of
adoption lags in our sample. Over the two centuries for which we have data the average
adoption lag across countries for new technologies has steadily declined.
The second �nding is that the growth �miracles�of Japan and the East Asian Tigers,

though more than half a century apart, both coincided with a reduction of the technology
adoption lags in these countries relative to those in their OECD counterparts.
Third, when we use our model to quantify the implications of the country-speci�c

variation in adoption lags for cross-country per capita income di¤erentials, we �nd that
di¤erences in technology adoption account for at least a quarter of per capita income
disparities in our sample of countries.
Our exploration yields a set of precise estimates of the size of adoption lags across a

broad range of technologies and countries. We plan on using these in subsequent work to
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investigate what are the key cross-country di¤erences in endowments, institutions, and
policies that impinge on technology di¤usion.
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Table 3� Analysis of variance

Total sum of squares = 1231426, N = 830
Model Country Technology Residual Total
SS e¤ect e¤ect SS SS

Country e¤ect alone 31% 31% 69% 100%
Technology e¤ect 65% 65% 35% 100%
Joint e¤ect 83% 18% 53% 17% 100%

Table 4� Robustness of estimates to unrestricted curvature

Invention Percentage Correlation between
Technology year (v� ) H0 not rejected* Estimated adoption lags
Steam- and motorships 1788 65 .99
Railways - Passengers 1825 67 .89
Railways - Freight 1825 62 .97
Cars 1885 75 .82
Trucks 1885 81 .81
Aviation - Passengers 1903 66 .93
Aviation - Freight 1903 77 .83

Telegraph 1835 59 .95
Telephone 1876 80 .94
Cellphones 1973 67 .70

PCs 1973 59 .41
Internet users 1983 100 .59

MRIs 1977 92 .56

Blast Oxygen Steel 1950 72 .73

Electricity 1882 41 .91

Total 69 .80**

Note: All results are for plausible and precise estimates under restricted speci�cation.
* At 5 percent signi�cance level. ** Correlation is weighted average of correlations across

technologies.
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Figure 1. Electricity production in four countries.
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Figure 2. Fit of model to U.S. time series (part 1)
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Figure 3. Fit of model to U.S. time series (part 2)
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Figure 4. Actual and fitted tonnage of steam and motor ships for four countries
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Figure 5. Technology adoption lags decrease for later inventions



VOL. VOL NO. ISSUE TECHNOLOGY DIFFUSION 31

Figure 6. TFP part of technology adoption lags versus real GDP per capita.
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Data

The data that we use are taken from two sources. Real GDP and population data are
taken from Maddison (2007). The data on the technology measure are from the Cross-
Country Historical Adoption of Technology (CHAT) data set, �rst described in Comin,
Hobijn, and Rovito (2006). The �fteen particular technology measures, organized by
broad category, that we consider are:

1) Steam and motor ships: Gross tonnage (above a minimum weight) of steam
and motor ships in use at midyear. Invention year: 1788; the year the �rst (U.S.)
patent was issued for a steam boat design.

2) Railways - Passengers: Passenger journeys by railway in passenger-KM.
Invention year: 1825; the year of the �rst regularly schedule railroad service to
carry both goods and passengers.

3) Railways - Freight: Metric tons of freight carried on railways (excluding livestock
and passenger baggage).
Invention year: 1825; same as passenger railways.

4) Cars: Number of passenger cars (excluding tractors and similar vehicles) in use.
Invention year: 1885; the year Gottlieb Daimler built the �rst vehicle powered by
an internal combustion engine.

5) Trucks: Number of commercial vehicles, typically including buses and taxis (ex-
cluding tractors and similar vehicles), in use. Invention year: 1885; same as cars.

6) Aviation - Passengers: Civil aviation passenger-KM traveled on scheduled ser-
vices by companies registered in the country concerned. Invention year: 1903; The
year the Wright brothers managed the �rst succesful �ight.

7) Aviation - Freight: Civil aviation ton-KM of cargo carried on scheduled services
by companies registered in the country concerned. Invention year: 1903; same as
aviation - passengers.

8) Telegraph: Number of telegrams sent. Invention year: 1835; year of invention of
telegraph by Samuel Morse at New York University.

9) Telephone: Number of telegrams sent. Invention year: 1876; year of invention of
telephone by Alexander Graham Bell.

10) Cellphone: Number of users of portable cell phones. Invention year: 1973; �rst
call from a portable cellphone.

11) Personal computers: Number of self-contained computers designed for use by
one person. Invention year: 1973; �rst computer based on a microprocessor.

12) Internet users: Number of people with access to the worldwide network. Inven-
tion year: 1983; introduction of TCP/IP protocol.

13) MRIs: Number of magnetic resonance imaging (MRI) units in place. Invention
year: 1977; �rst MRI-scanner built.

14) Blast Oxygen Steel: Crude steel production (in metric tons) in blast oxygen
furnances (a process that replaced bessemer and OHF processes). Invention year:
1950; invention of Blast Oxygen Furnace.
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15) Electricity: Gross output of electric energy (inclusive of electricity consumed in
power stations) in KwHr. Invention year: 1882; �rst commercial powerstation on
Pearl Street in New York City.

Mathematical details

Derivation of equation (24):

This follows from

An =
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Derivation of equation (29)

Denote the adoption time by T� = D� + v� . Consider the technology-speci�c TFP level

(34) A�t = Zv�
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.

We are interested in the behavior of this TFP for 
� # 0. In that case, there is no
embodied productivity growth and the increase in productivity after the introduction of
the technology is all due to the introduction of an increasing number of varieties over
time.

For this reason, we consider
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which, using de l�Hopital�s rule, can be shown to equal

(36) Zv�

�
lim

�#0

�
�� 1

�

��
e


�
��1 (t�T� ) � 1

����1
= Zv� (t� T� )

(��1) .



34 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

Taking the �rst order Taylor approximation around 
 = 0 yields that
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Hence, for 
� close to zero,

(38) a�t � zv� + (�� 1) ln (t� T� ) +
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2
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Derivation of equation (30)
Combining the four log-linearized equations, we obtain for m� = y� that
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