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Abstract

Statistical agencies typically impute inflation for disappearing products
from the inflation rate for surviving products. As some products disappear
precisely because they are displaced by better products, inflation may be
lower at these points than for surviving products. As a result, creative
destruction may result in overstated inflation and understated growth. We
use a simple model to relate this “missing growth” to the frequency and
size of various kinds of innovations. Using U.S. Census data, we then apply
two ways of assessing the magnitude of missing growth for all private non-
farm businesses for 1983–2013. The first approach exploits information on
the market share of surviving plants. The second approach applies indirect
inference to firm-level data. We find: (i) missing growth from imputation
is substantial — approximately 0.5 percentage points per year for both ap-
proaches; and (ii) most of the missing growth is due to creative destruction
(as opposed to new varieties).
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1 Introduction

Whereas it is straightforward to compute inflation for an unchanging set of goods

and services, it is much harder to separate inflation from quality and variety

improvements amidst a changing set of items. In the U.S. Consumer Price Index

(CPI), over 3% of items exit the market each month (Bils and Klenow, 2004). In

the Producer Price Index (PPI) the figure is over 2% per month (Nakamura and

Steinsson, 2008).

The Boskin Commission (1996) highlighted the challenges of measuring quality

improvements when incumbents upgrade their products. It also maintained that

the CPI does not fully capture the benefits of brand new varieties. We argue

that there exists a subtler, overlooked bias in the case of creative destruction.

When the producer of the outgoing item does not produce the incoming item, the

standard procedure at statistical offices is to resort to some form of imputation.

Imputation inserts the average price growth among a set of surviving products

that were not creatively destroyed.1 We think this misses some growth because

(inflation is likely to be below-average for items subject to creative destruction.

Creative destruction is known to be a key source of economic growth. See

Aghion and Howitt (1992), Akcigit and Kerr (2010), and Aghion et al. (2014).

We therefore attempt to quantify the extent of “missing growth”—the difference

between actual and measured productivity growth—due to the use of imputation

in cases of creative destruction. Our estimates are for the entire U.S. nonfarm

business sector over the past three decades.

In the first part of the paper we develop a growth model with (exogenous)

innovation to provide explicit expressions for missing growth. In this model, inno-

vation may either create new varieties or replace existing varieties with products

of higher quality. The quality improvements can be performed by incumbents

on their own products, but also by competing incumbents and entrants (creative

destruction). The models predicts missing growth due to creative destruction if

the statistical office resorts to imputation.

1U.S. General Accounting Office (1999) details CPI procedures for dealing with product
exit. For the PPI, “If no price from a participating company has been received in a particular
month, the change in the price of the associated item will, in general, be estimated by averaging
the price changes for the other items within the same cell for which price reports have been
received.” (U.S. Bureau of Labor Statistics, 2015a, p.10) BLS explicit quality adjustments,
such as hedonics, are used predominantly for goods that undergo periodic model changes by
incumbent producers (Groshen et al., 2017).
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In the second part of the paper we use two alternative approaches to estimate

the magnitude of missing growth based on our model. For both approaches we use

micro data from the U.S. Census on employment at all private nonfarm businesses

for the years 1983–2013. For the first approach we look at employment shares of

incumbent, entering, and exiting plants. If new plants produce new varieties and

carry out creative destruction, then the inroads they make in incumbents’ market

share signal their contribution to growth.

In the second approach, we extend the algorithm in Garcia-Macia et al. (2016)

to estimate the arrival rates and step sizes of the various kinds of innovations

(creative destruction by entrants and incumbents, incumbent own innovation, ex-

panding variety by entrants and incumbents). We then use our accounting frame-

work to calculate missing growth. This second approach allows us to estimate

the contribution of each of the different types of innovation to missing growth. It

does not assume that new plants introduce new varieties and carry out creative

destruction, but does rely on indirect inference.

Our findings from these two quantification exercises can be summarized as

follows. First, missing growth from imputation is substantial. We estimate that

missing growth averages around 0.5 percentage points per year over the past thirty

years when using both the “market share” approach and the “indirect inference”

method. Second, the primary source of missing growth has been creative destruc-

tion rather than new varieties.

Our study relates to several strands of literature. The first is the pioneering

work of Abramovitz (1956), Jorgenson and Griliches (1967), Griliches (1996) and

Diewert (2000) on the measurement of Total Factor Productivity (TFP).2 Second,

our paper builds on the innovation-based endogenous growth literature (Romer,

1990; Grossman and Helpman, 1991; Aghion and Howitt, 1992). Third is the

literature on growth, reallocation and firm dynamics (Klette and Kortum, 2004;

Akcigit and Kerr, 2010; Acemoglu et al., 2013; Haltiwanger, 2015).3

Our paper touches on the recent literature on secular stagnation and growth

measurement. Gordon (2012) observes that a rising flow of patented innovations

has not been mirrored by an acceleration in measured TFP growth.4 He argues

that the innovation process has run into diminishing returns, leading to an irre-

versible slowing of TFP growth. Syverson (2016) and Byrne et al. (2016) conclude

2See also Hulten (2000) and Lipsey and Carlaw (2000, 2004).
3See also Davis et al. (1998) and Bartelsman and Doms (2000).
4Related studies include Jones (1995), Kortum (1997), and Bloom et al. (2016).
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that understated growth in certain sectors, most notably the ICT sector, cannot

account for the productivity slowdown since 2005 because, among many reasons,

the ICT sector is small relative to the aggregate economy. In contrast to these

studies, we look at missing growth for the whole economy, not just from the ICT

sector. We find that missing growth has not declined over the past thirty years,

and in fact seems to have risen modestly. A corollary is that missing growth

appears to be a growing fraction of true productivity growth.

More closely related to our analysis are Feenstra (1994), Bils and Klenow

(2001), Bils (2009), Broda and Weinstein (2010), Erickson and Pakes (2011),

Byrne et al. (2015), and Redding and Weinstein (2016).5 We make two contribu-

tions relative to these important papers. First, we compute missing growth for the

entire private nonfarm sector from 1983–2013.6 Second, we focus on a neglected

source of missing growth, namely imputation in the event of product exit. We

isolate missing growth from creative destruction as opposed to the more familiar

quality improvements by incumbents on their own products and expanding vari-

ety. The missing growth we identify is likely to be exacerbated when there is error

in measuring quality improvements by incumbents on their own products.7

The rest of the paper is organized as follows. In Section 2 we lay out a growth

model and derive the expression for missing growth and how it relates to creative

destruction. In Section 3 we use the two alternative approaches, respectively

based on survivor market shares and indirect inference, to compute missing growth

estimates using U.S. Census data. Section 4 concludes.

5Feenstra (1994) corrects for biases in the U.S. import price indices of six manufacturing
goods, in particular due to an expanding set of available product varieties. Bils and Klenow
(2001) use the U.S. Consumer Expenditure surveys to estimate “quality Engel curves” and
assess the unmeasured quality growth of 66 durable goods which account for 12% of consumer
spending. Bils (2009) uses CPI micro data to decompose the observed price increases of durable
goods into quality changes and true inflation. Broda and Weinstein (2010) look at missing
growth from entry and exit of products in the non-durable retail sector, using the AC Nielsen
Homescan database, which samples purchases by 55,000 households across 23 U.S. cities. Byrne
et al. (2015) look at missing growth in the semiconductor sector.

6Broda and Weinstein (2010) used AC Nielsen data from 1994 and 1999–2003. This database
is heavily weighted toward nondurables, particularly food. Bils and Klenow (2004) report a
product exit rate of about 2.4% per month for nondurables (1.2% a month for food) versus
about 6.2% per month for durable goods. Hence it is important to analyze missing growth
across many sectors of the economy, including durables.

7Unlike Broda and Weinstein (2010), we do not assume the BLS makes no effort to quantify
such quality improvements. Bils (2009) estimates that the BLS subtracted 0.7 percentage points
per year from inflation for durables over 1988–2006 due to quality improvements. For the whole
CPI, Moulton and Moses (1997) calculate that the BLS subtracted 1.76 percentage points on
average for the year 1995.
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2 A model of missing growth

In this section we develop a simple accounting framework that allows us to an-

alyze the determinants of missing growth in the aggregate economy from biased

measurement of quality improvement as well as expanding product variety.

2.1 Basic setup

2.1.1 Structure of the aggregate economy

Time is discrete and in each period output has a CES structure:8

Y =

(∫ N

0

[q(j) y(j)]
σ−1
σ dj

) σ
σ−1

. (1)

We assume that Y is competitively produced from intermediate inputs y(j) that

come at quality q(j) and N is the number of intermediate varieties available.

An alternative interpretation of Y is that it denotes utility of a representative

consumer who consumes N different products y(j) at quality q(j). With either

interpretation, σ ≥ 1 denotes the constant elasticity of substitution between the

different intermediate goods.9

2.1.2 Intermediate input production

Each intermediate input y(j) is produced one-for-one with labor, i.e., we have

y(j) = l(j), (2)

where l(j) is the amount of labor used to produce intermediate good j. In our

online appendix, we extend our core analysis and quantification of missing growth

to the case where the production of intermediate inputs also uses capital, according

8We remove time subscripts for notational simplicity whenever it risks no confusion.
9The production function in (1) is not well defined for σ = 1. In this special case, we assume

technology takes a Cobb-Douglas form:

Y = N exp

(
1

N

∫ N

0

log [q(j) y(j)] dj

)
.

We will use σ > 1 for our quantitative exercises based on estimates in the literature. But the
special case with σ = 1 is helpful for highlighting channels of missing growth (Section 2.3).
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to the Cobb-Douglas technology

y(j) = (k(j)/α)α (l(j)/(1− α))1−α ,

where k(j) denotes physical capital used in production of input j. In the online

appendix we argue that factoring in capital leads to either unchanged or increased

missing growth as a fraction of measured TFP growth under reasonable assump-

tions as to how the growth in capital stock is measured by the statistical office.

2.1.3 Resource constraint and market structure

The final good sector is assumed to be competitive. Hence, each intermediate

good is paid its marginal productivity in producing the final good, whereas in-

termediate producers are monopolistic but potentially subject to a competitive

fringe. There is a representative household supplying inelastically a fixed amount

of labor every period. Labor is freely mobile across firms and the wage rate, W ,

consequently equalizes in equilibrium across all firms. Nominal expenditure by

the representative household on the final output good are given by M which gives

the budget constraint

M = PY.

Here, P denotes the price index that we will specify further below.

In the remaining part of the paper we will analyze how, for a given path of M

or W (which is subject to normalization), innovations of different sorts affect the

dynamics in the true (quality-adjusted) price index, P , of the economy. This will

allow us to decompose changes in nominal output, M , into inflation and growth in

real output, Y . Then, we will model the statistical office’s imputation procedure

to measure price inflation in the economy and show how this imputation leads to

a bias in estimated real output growth, i.e., to missing growth. Finally, we will

highlight how this simple accounting framework can be used to quantify “missing

growth” from data on market shares of surviving incumbent vs. newly entering

firms. In the online appendix we show how the framework can be extended to the

more general case where the elasticity of substitution and markups vary across

sectors and/or over time.
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2.1.4 Equilibrium prices

Suppose that all firms j can maximally charge a markup factor µ̃ > 1 over marginal

cost c(j) = W . Profit maximization by each intermediate monopolist j then

implies that it is optimal to charge a markup factor of µ > 1, where we have µ =

min
{
µ̃, σ

σ−1

}
.10 Hence, we obtain in equilibrium for the price of each intermediate

good j

p(j) = µW, ∀j. (3)

2.1.5 Innovation

We model technical change as product innovation.11 At each point in time, and for

each intermediate input j there is an exogenous probability of creative destruction

λd ∈ [0, 1), i.e., with probability λd a new entrant is replacing the incumbent firm.

If a new entrant is entering a product market j the incumbent firm is pushed out

of the market. We assume that the new entrant improves upon the incumbent’s

quality by a factor γd > 1. Then, formally, if j is an existing variety where quality

is improved upon by a new entrant, we have

qt+1(j) = γd qt(j). (4)

We refer to this innovation process as creative destruction.

In addition, for surviving incumbent firms (i.e., firms that are not eclipsed by

creative destruction) there is each period an exogenous arrival rate λi ∈ [0, 1) of

an innovation that improves the quality of the incumbent firm by a factor γi > 1.

Hence, if j is a variety where quality is improved upon by the incumbent producer,

we have

qt+1(j) = γiqt(j). (5)

We call this type of innovation process incumbent own innovation.

Both the arrival rates of creative destruction and incumbent own innovation

are constant and uncorrelated with the initial quality level.

10In the absence of a binding competitive fringe on the intermediate producer’s market, one
can show that that it is optimal to set µ = σ

σ−1 .
11This is a modeling choice which does not affect the main result of our theoretical analysis.

However, it matters in the empirical context since pure process innovation is arguably more likely
to be captured by the statistical office. Yet, as it turns out, for products with price information
in the Census of manufacturing firms and plants, we find that firm revenues increase without
a decline in unit prices. This suggests that innovations are rather of the product than of the
process type.
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Finally, each period t+1, Ntλn firms are newly created and sell a new product

variety ι ∈ (Nt, Nt+1] from t + 1 onward. Consequently, the law of motion of the

number of intermediate inputs is given by

Nt+1 = (1 + λn)Nt.

To complete our description of the innovation process, we need to state the (rela-

tive) quality of new product varieties. This is done through the following assump-

tion.

Assumption 1 A firm that introduces in period t + 1 a new variety ι starts

with a quality that equals γn times the “average quality” of pre-existing varieties

j ∈ [0, Nt] in period t, or formally

qt+1(ι) = γn

(
1

Nt

∫ Nt

0

qt(j)
σ−1dj

) 1
σ−1

, ∀ι ∈ (Nt, Nt+1]. (6)

The “average quality” in Assumption 1 refers to the weighted geometric aver-

age that depends on the elasticity of substitution. We do not put further restric-

tions on the value of γn so that new products may enter the market with above

or below average market productivity.

To summarize, there are three sources of growth in this framework: First, the

quality of some products increases due to creative destruction. Second, for some

other products quality increases as a result of incumbent own innovation. Third,

new product varieties are invented which affects aggregate growth, both because

the production function (1) features gains from specialization and because new

varieties may appear at an above-average quality.

2.2 Missing growth

2.2.1 Missing growth as mismeasured inflation

By definition, the aggregate nominal output, M , is equal to the product of the

price index, P , and real output, Y . Hence, gross real output growth between t

and t+ 1 can be expressed as

Yt+1

Yt
=
Mt+1

Mt

· Pt
Pt+1

,
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where Pt
Pt+1

is the inverse of the gross inflation rate. We assume that nominal

output growth, Mt+1

Mt
, is perfectly measured, in which case the mismeasurement in

real output growth is entirely due to mismeasured (quality-adjusted) inflation.

More formally, if P̂t
Pt+1

denotes measured inverse gross inflation, then measured

real output growth is equal to

Ŷt+1

Yt
=
Mt+1

Mt

· P̂t
Pt+1

.

Expressed in log first differences the rate of “missing” output growth is equal to

MGt+1 = log

(
Yt+1

Yt

)
− log

(
Ŷt+1

Yt

)
= log

(
P̂t+1

Pt

)
− log

(
Pt+1

Pt

)
. (7)

Thus there will be positive missing growth whenever inflation is overstated

and vice versa.

2.2.2 True prices and inflation

The aggregate price index In the following we derive the “true” welfare based

aggregate price index. The results are immediately obtained from the fact that, in

each period, the final good sector maximizes current final output, Y , with respect

to {y(j)}Nj=0 subject to M =
∫ N

0
y(j)p(j)dj. We remove time subscripts here again

for notational simplicity.

Proposition 1 In equilibrium: (i) the demand for an intermediate product y(j)

sold at price p(j) is given by

y(j) = q(j)σ−1

[
P

p(j)

]σ
M

P
, ∀j. (8)

(ii) the equilibrium aggregate price index is given by

P =

(∫ N

0

[
p(j)

q(j)

]1−σ

dj

) 1
1−σ

. (9)

Under optimal price setting of the firms we obtain

P = µW

(∫ N

0

q(j)σ−1dj

) 1
1−σ

. (10)
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Proof. The first-order conditions when maximizing Y =

 N∫
0

[q(j)y(j)]
σ−1
σ dj


σ
σ−1

with respect to {y(j)}Nj=0 subject to the (budget) constraint M =

N∫
0

y(j)p(j)dj,

can be written as

ξ p(j) = q(j)
σ−1
σ y(j)−

1
σ

(∫ N

0

[q(j′)y(j′)]
σ−1
σ d(j′)

) 1
σ−1

, ∀j ∈ [0, N ],

where ξ is the Lagrange multiplier attached to the budget constraint. Integrating

both sides of this equation over all j’s and combining it with (1) yields

ξ =
Y

M
=

1

P
.

Together with the above first-order conditions, this yields (8). Next, to derive

expression (9) for P , note that (8) implies that

p(j)y(j) =
M

P
q(j)σ−1P σp(j)1−σ.

Integrating both side of this equation over all j’s then immediately yields (9).

Finally, substituting for the equilibrium p(j) using (3) in (9) yields equation (10).

This establishes the proposition.

The true inflation rate Using the above expression for the aggregate price

index, we can compute the true inflation rate as a function of the arrival rates

and the quality step sizes of the various types of innovations. We obtain the

following proposition.

Proposition 2 The true gross inflation rate in the economy is given by

Pt+1

Pt
=
Wt+1

Wt

[
1 + λd

(
γσ−1
d − 1

)
+ (1− λd)λi

(
γσ−1
i − 1

)
+ λnγ

σ−1
n

] 1
1−σ . (11)

Proof. Taking gross growth factors of both sides of (10) gives

Pt+1

Pt
=
Wt+1

Wt

(∫ Nt

0

qt(j
′)σ−1dj′

) 1
σ−1
(∫ Nt+1

0

qt+1(j)σ−1dj

) 1
1−σ

. (12)
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Next, note that the term,
∫ Nt+1

0
qt+1(j)σ−1dj, can be written as∫ Nt+1

0

qt+1(j)σ−1dj =

∫ Nt

0

qt+1(j)σ−1dj +

∫ Nt+1

Nt

qt+1(ι)σ−1dι. (13)

Furthermore, with Assumption 1 and Nt+1−Nt
Nt

= λn, we obtain

∫ Nt+1

Nt

qt+1(ι)σ−1dι = λnγ
σ−1
n

∫ Nt

0

qt(j)
σ−1dj. (14)

The first term on the right-hand side of (13),
∫ Nt

0
qt+1(j)σ−1dj, can be rewritten

as

Nt∫
0

qt+1(j)σ−1dj = γσ−1
d

∫
ι∈Nd,t

qt(ι)
σ−1dι+ γσ−1

i

∫
j′∈Ni,t

qt(j
′)σ−1dj′ +

∫
ι′∈Ñt

qt(ι
′)σ−1dι′. (15)

where Nd,t and Ni,t is the set of products with a successful creative destruction or

incumbent own innovation and Ñt = [0, Nt] \ {Nd,t ∪ Ni,t} is the set of surviving

incumbents that do not improve the quality of their product between t and t+ 1.

We also know that |Nd,t| = λdNt and |Ni,t| = (1 − λd)λiNt. Then, because the

arrival rate of an innovation is independent of qt(j) (and there is a continuum

of varieties) the distribution of productivity of the varieties with and without

innovation coincide and then by the law of large numbers we have:∫
ι∈Nd,t

qt(ι)
σ−1dι = λd

∫ Nt

0

qt(j)
σ−1dj,∫

j′∈Ni,t
qt(j

′)σ−1dj′ = (1− λd)λi
∫ Nt

0

qt(j)
σ−1dj,∫

ι′∈Ñt
qt(ι

′)σ−1dι′ = (1− λd − (1− λd)λi)
∫ Nt

0

qt(j)
σ−1dj.

This in turn implies that (15) can be expressed as

Nt∫
0

qt+1(j)σ−1dj =
[
1 + λd

(
γσ−1
d − 1

)
+ (1− λd)λi

(
γσ−1
i − 1

)] Nt∫
0

qt(j)
σ−1dj. (16)

Putting equations (12), (14), and (16) together establishes the proposition.

Proposition 2 shows how the arrival rates and step sizes of the different type of
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innovation affect the inflation rate in the economy (for a given change in wages).

The term λnγ
σ−1
n captures the effect of variety expansion on inflation, and the

inflation rate is indeed falling in λn and γn. The term (1 − λd)λi
(
γσ−1
i − 1

)
summarizes the effect of incumbent own innovation on price growth. Again, it can

directly been seen from (11) that the inflation rate in the economy is monotonically

decreasing in λi and γi. Finally, the term λd
(
γσ−1
d − 1

)
captures the effect from

creative destruction on the overall quality-adjusted inflation rate. For a given path

of nominal wages, the inflation rate is monotonically decreasing in γd. The only

comparative static effect that is not immediately clear is the one with respect to

λd. The economy wide inflation rate is decreasing in λd if

γσ−1
d − 1 > λi(γ

σ−1
i − 1), (17)

which is a condition we will get back to further below. This ambiguity is due

to the non-trivial interaction between the arrival rates of creative destruction

and incumbent own innovation. An increase in the rate of creative destruction

raises growth for instance if surviving products are expected to improve less than

creatively destroyed products.

2.2.3 Imputation and measured inflation

Throughout our analysis we assume that the statistical office perfectly observes

nominal values such as nominal output and wage growth. Hence, as highlighted

in (7), missing growth arises if quality-adjusted price changes are overstated. We

further assume that the statistical office has no problem measuring unit prices.

Thus the difficulty in arriving at quality-adjusted price changes is in measuring

quality changes.

There are well-known challenges to assessing quality changes when firms up-

grade their own products, say from one model year to another (Boskin et al.,

1996). Quality improvements implemented by new producers (i.e., through cre-

ative destruction), pose an additional measurement challenge. When the item

produced by a given seller has disappeared altogether, the standard procedure

used by statistical offices is some form of imputation.12 Imputation uses the rate

of quality-adjusted price growth for a set of surviving products that were not sub-

12Based on the 1999 Report of the General Accounting Office (GAO) of the BLS (which is
itself based on data from 1997), the Appendix calculates that imputation was used 92% of the
time in 1997 when a seller ceased producing a product in the CPI.
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ject to creative destruction. This procedure is valid if the rate of quality change

associated with creative destruction is the same as that for surviving products.

But the vast majority of surviving products are not being improved in a given

period, according to BLS estimates (Bils and Klenow, 2004; Nakamura and Steins-

son, 2008). Instances of creative destruction are linked to innovative success, so

they may associated with more rapid quality improvements than surviving prod-

ucts taken as a whole.

In line with the imputation used in practice, let us formally characterize the

procedure in the following way:13

Assumption 2 In the presence of new products the statistical office resorts to

imputation, i.e., the set of surviving products is assumed to be representative and

the economy wide inflation rate is imputed from this subset of products.

Surviving products are either products with incumbent own innovation or no

innovation at all. We denote statistical office estimates for the frequency and step

size of quality-improving innovations on surviving products as λ̂i and γ̂i.

Proposition 3 Under Assumption 2, the measured inflation rate is given by(
P̂t+1

Pt

)
=
Wt+1

Wt

[
1 + λ̂i

(
γ̂i
σ−1 − 1

)] 1
1−σ

. (18)

Proof. Under Assumption 2 we have

(
P̂t+1

Pt

)
=
Wt+1

Wt

(∫
NI,t

qt(j
′)σ−1dj′

) 1
σ−1
(∫
NI,t

qt+1(j)σ−1dj

) 1
1−σ

, (19)

where NI,t = [0, Nt] \ Nd,t is the set of products that survive between period

t and t + 1. Note that a fraction λi of these surviving products experiences

incumbent own innovation (and the quality improves by a factor of γi) whereas

for the remaining fraction, 1 − λi, quality remains unchanged. Hence, we have∫
NI,t

qt+1(j)σ−1dj =
(∫
NI,t

qt(j
′)σ−1dj′

) [
1− λi + λiγ

σ−1
i

]
. Using this equation in

(19) and replacing γi and λi by their estimates yields (18).

13As we do, Erickson and Pakes (2011) identify imputation exit as source of upward bias in
estimating the average price change for exiting products. These authors explain why even the
BLS’s hedonic procedures — which estimate the missing price of exiting goods using regressions
of prices on observable product characteristics — fail to eliminate bias because they do not
correct for time-varying unmeasured characteristics of the goods.
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Henceforth we assume that the statistical office perfectly observes frequency

and step size of incumbent own innovation, i.e., we have λ̂i = λi and γ̂i = γi.
14

2.2.4 Missing growth

Recall that missing real output growth between period t and t + 1 is given by

the inverse of the bias in the estimated inflation rate (see (7)). Under the above

assumptions about innovation processes and about the procedure of the statistical

office, missing growth can be expressed as in the following proposition.

Proposition 4 Missing real output growth is given by

MG =
1

σ − 1
log

(
1 +

λd
[
γσ−1
d − 1− λi

(
γσ−1
i − 1

)]
+ λnγ

σ−1
n

1 + λi
(
γσ−1
i − 1

) )
. (20)

Proof. The expression for missing growth is directly obtained from combining

(7), (11), and (18).

Since the statistical office imputes the inflation rate from surviving products

(see Assumption 2) there are two sources of missing growth: (i) variety expansion

and (ii) creative destruction innovation are imputed but not directly measured.

The last term in equation (20) captures the growth mismeasurement from missing

out on new variety creation. The first term in (20) measures the missing growth

from not properly factoring in creative destruction. We see that the statistical

office understates true output growth if the imputed growth from creative destruc-

tion (which is imputed from surviving products) understates the true expected

growth from creative destruction. This can happen in two ways: (i) creative de-

struction has larger step size than incumbent own innovation (γd > γi) and (ii)

not all of the surviving incumbents innovate (λi < 1). Hence, note that missing

growth from creative destruction remains positive even in the special case where

creative destruction and incumbent innovation have the same step size. We see

that missing growth is monotonically increasing in γd and is also increasing in λd

as long as
(
γσ−1
d − 1

)
> λi

(
γσ−1
i − 1

)
. This is the same condition that ensures

that overall true growth is increasing in λd (see (17)). Missing growth is large if

creative destruction is an important source of true growth.

14In equation (27), we show how our main results would be affected if the quality improvement
of incumbents is not perfectly measured.
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2.3 An illustrative example: the Cobb-Douglas case

Even though this may not be the most realistic case, we use the special case where

the production technology for the final good is Cobb-Douglas to illustrate how

creative destruction can lead to missing growth. Hence, let us consider the limit

case where final output is produced according to the Cobb-Douglas technology

Y = N exp

[
1

N

∫ N

0

log [q(j)y(j)] dj

]
. (21)

We assume the number of varieties N is fixed because there is no love of variety

under Cobb-Douglas aggregation.

Aggregate price index Since the final sectoral output producer produces com-

petitively we get as a demand for product y(j) that is sold at price p(j)

y(j) =
PY

Np(j)
,

where P is the price index defined as

P = exp

(
1

N

∫ N

0

log [p(j)/q(j)] dj

)
.

Under the optimal price setting rule we get the following expression for the ag-

gregate equilibrium price index

P = µW exp

(
− 1

N

∫ N

0

log (q(j)) dj

)
. (22)

The true inflation rate can then be expressed as

Pt+1

Pt
=
Wt+1

Wt

γ
−(1−λd)λi
i γ−λdd .

Measured inflation and missing growth Under Assumption 2 measured

inflation becomes (
P̂t+1

Pt

)
=
Wt+1

Wt

γ−λii .
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Consequently, we obtain for missing growth as:

MG = λd · (log γd − λi log γi). (23)

This missing growth from creative destruction can be decomposed as

λd (log γd − λi log γi) = λd(1− λi) log γi + λd (log γd − log γi) .

The first term in this decomposition captures the fact that not all incumbents

innovate, whereas the second term captures the step size differential between

creative destruction and incumbent own innovation.

Numerical example Here we perform an illustrative calculation based on (23).

We assume: (i) no variety expansion; (ii) the same step size for incumbent own

innovation (OI) and for creative destruction (CD), i.e., γi = γd = γ, and (iii)

annualized arrival rates λi and λd of OI and CD by new entrants that are both

equal to 10% which is close to the exit rate of plants/firms. Finally, we assume that

measured annual real output growth is equal to 1%, which implies λi log γi = 1%

so that log γi = 10%. Then, the annual rate of missing growth from creative

destruction is equal to

MG = 10% · (1− 10%) · 10% = 0.9%.

Although this is just an illustrative exercise, we will see in the next sections

that this simple example is not far off from what we obtain using plant- and firm-

level data on employment dynamics to determine the step sizes and frequencies

of the various types of innovations.

3 Estimating missing growth

In this section we explore two alternative approaches for quantifying missing

growth in the data. Both approaches build on the model developed in the previ-

ous section, although differently and using different data sets. The first approach

uses information on the market shares of entrants, exiters and survivors: we refer

to it as the market share approach. The second approach uses the algorithm in

Garcia-Macia et al. (2016) to infer arrival rates and step sizes of different type of

16
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innovations and compute missing growth: we refer to it as the indirect inference

method.

3.1 The market share approach

Here we show how to use our model in the previous Section 2 to estimate missing

growth using data on the market shares throughout the time period we consider

of entrant establishments (plants), of survivor plants that stay in the market, and

of exiters. This approach does not allow us to differentiate between the different

sources of missing growth but it provides a simple and intuitive quantification.

3.1.1 Relating missing growth to market share dynamics

The idea behind the market share approach is that the nominal expenditure shares

of different group of products are potentially observable and do contain informa-

tion about the quality-adjusted prices. The imputation used by the statistical

office implies that the quality-adjusted price growth of the surviving products

is taken as representative for the economy wide inflation rate. The CES frame-

work of Section 2 suggests a simple test for the representativeness of the set of

surviving products; the quality-adjusted price dynamics of the survivors is repre-

sentative if and only if their market share remains stable over time. Furthermore,

given an estimate for the elasticity of substitution, we show how the dynamics

of market shares can be used to quantify missing growth. To construct the main

argument more formally, let us define the market share of a product j as follows:

s(j) ≡ p(j)y(j)
M

, where M =
∫ N

0
p(j)y(j)dj = PY . Combining this definition with

the demand (8) gives

s(j) =

(
P

p(j)/q(j)

)σ−1

.

Hence, the market share of product j is given by an power function of the quality-

adjusted price of j relative to the aggregate price index, P .

The statistical office’s imputation is based on surviving products between two

period t and t+ 1, i.e., on the set of products NI,t = [0, Nt]\Nd,t. In the following

we call these surviving products between t and t + 1 continuers. In period t the

aggregate market share of these continuers is given by

SIt,t =

∫
NI,t

(
Pt

pt(j)/qt(j)

)σ−1

dj.

17
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A period later, the aggregate market share of the same continuers is given by

SIt,t+1 =

∫
NI,t

(
Pt+1

pt+1(j′)/qt+1(j′)

)σ−1

dj′.

Under the price setting of firms, (3), and the specified innovational processes we

can then express the growth rate of the market share of continuers in the next

proposition.

Proposition 5 The gross growth rate of the market share of continuers from t to

t+ 1 is given by

SIt,t+1

SIt,t
=

(
Pt+1

Pt

)σ−1(
Wt+1

Wt

)1−σ

(1− λi + λiγ
σ−1
i ). (24)

Proof. Using the price setting behavior of the firms, (3), yields for the mar-

ket share growth
SIt,t+1

SIt,t
=

(
Wt+1/Pt+1

Wt/Pt

)1−σ

∫
NI,t

qt+1(j′)σ−1dj′∫
NI,t

qt(j)
σ−1dj

. Now note that

a fraction λi of continuers experience incumbent own innovation whereas for

the remaining fraction, 1 − λi, quality remains unchanged. Hence, we have∫
NI,t

qt+1(j′)σ−1dj′ =

∫
NI,t

qt(j)
σ−1dj

[
1− λi + λiγ

σ−1
i

]
, which establishes the propo-

sition.

Since we have σ > 1, the market share of continuers decreases if and only if the

price index of these products

(∫
NI,t+1

(pt+1(j′)/qt+1(j′))
1−σ

dj′

) 1
1−σ

grows faster

than the aggregate price index in the economy, Pt. Proposition 5 additionally

exploits that the price index of continuers grows at the rate of the nominal wage

growth Wt

Wt+1
times (1−λi+λiγσ−1

i )1/(1−σ), which captures the impact of incumbent

own innovation on prices.

Important to note is that in view of Proposition 3 (and under the assumption

of γ̂i = γi and λ̂i = λi) the market share growth of continuers can be related to

the measured inflation rate as follows:

SIt,t+1

SIt,t
=

(
Pt+1

Pt

)σ−1
(
P̂t+1

Pt

)−(σ−1)

. (25)

The intuition behind this equation is that, as argued before, the market share
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growth of continuers is a power function of the gross growth factor of the price

index of these surviving firms relative to the aggregate price index. The surviv-

ing products however constitutes precisely the set of products the imputation is

based on. Under the assumption that the statistical office perfectly measures the

quality-adjusted price inflation of continuers this gives us a simple test for the rep-

resentativeness of this subset of products: As (25) highlights, the quality-adjusted

price dynamics of the continuers is representative if and only if their market share

is stable over time. However, if the market share of the continuers decreases over

time, measured inflation P̂t+1

Pt
is too high and there is missing growth (note that

we have σ > 1). In addition, for a given value of the elasticity of substitution, σ,

this can be exploited to quantify missing growth. This is highlighted in the next

proposition.

Proposition 6 Missing growth can be calculated from the market share dynamics

of continuers as

MGt+1 = log

(
P̂t+1

Pt

)
− log

(
Pt+1

Pt

)
=

1

σ − 1
log

(
SIt,t
SIt,t+1

)
. (26)

Proof. Combining (7) and (25) directly proves the proposition.

Since σ > 1, this proposition highlights again that missing growth is positive

whenever the market share of continuers shrinks over time. In the following we

use equation (26) in Proposition 6 to quantify missing growth.15

3.1.2 Measuring the continuers’ market share

Let B denote the first period of operation and D denote the last year of operation

for a plant. Then let L(t, B ≤ b,D ≥ d) denote the total employment or payroll

in period t of plants who were born before or in period b and die in period d or

15Proposition 6 assumes quality improvement by incumbent’s own innovation is correctly
measured, i.e., γ̂i = γi and λ̂i = λi. Without this assumption, missing growth in this model is
given by

MGt+1 =
1

σ − 1

[
log

(
1 + λi(γ

σ−1
i − 1)

1 + λ̂i(γ̂
σ−1
i − 1)

)
+ log

(
SIt,t
SIt,t+1

)]
. (27)

Missing growth consists of quality measurement error of incumbent own innovation plus impu-
tation error. Our market share approach captures the imputation error.
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after. The ratio
SIt,t
SIt,t+1

on the right-hand side of (26) is then measured as

(
L(t, B ≤ t,D ≥ t+ 1)

L(t, B ≤ t,D ≥ t+ 1) + L(t, B ≤ t,D = t)

)/
(28)(

L(t+ 1, B ≤ t,D ≥ t+ 1)

L(t+ 1, B ≤ t,D ≥ t+ 1) + L(t+ 1, B = t+ 1, D ≥ t+ 1)

)
.

This implies that missing growth is positive whenever the employment/payroll

share of continuing plants shrinks between t and t+ 1. For our baseline results we

will rely on employment data whereas Section 3.1.4 shows the results with payroll

data as a robustness check.

Note that our approach here uses information on entering and exiting plants

to measure growth from increased product variety. Hence implicitly our approach

assumes that the number of products per plant is constant over the lifecycle of

a plant. If anything, this assumption is likely to lead to an underestimation of

missing growth since the number of products per plant is rather growing than

shrinking over time. An underestimation of missing growth then results because

our approach assumes that growth from adding new product lines within a given

establishment is perfectly observed by the statistical office although it is of the

creative destruction or variety expansion type. However, as we will explain below,

our baseline specification will only use the information of market size of new plants

after a 5-year lag. Hence the critical assumption is that the number of products

per plant is constant after the age of 5 years, which seems to be a reasonable

approximation of reality.16

Note also that our approach uses employment (or payroll) data to measure

market shares. Unfortunately, plants’ revenue data are only available for manu-

facturing firms through the Census of Manufactures (CMF), and only every five

years. Hence these data only allows us to calculate the cumulative market share

growth of surviving plants over the last five years. Yet for these survivors, market

share by revenue shrunk faster than market share by employment, so that missing

growth as defined by (26) is higher when market share is measured by revenue

share.17

16Note in particular, that if surviving plants of age greater than five were on average increasing
their number of products over time, the elasticity of plant exit with plant age would steeply
decline with age, but in fact one can show that it does not.

17Note also that the CMF and LBD data yield similar figures for missing growth when
using employment shares to measure plants’ market shares, which suggests that the CMF-based
estimates of missing growth are comparable.
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How is the first period of operation, B, and the last period of operation,

D, measured in the data? In the following we define a period t as a calendar

year. A natural way is then to map B and D to the first and last year the plant

appears in the dataset. This would implicitly assume that entry and exit in our

data correspond to entry and exit in the market. However, in practice entering

the LBD database does not necessarily mean fully entering the market. Some

establishments may appear in the database even during the development phase

of their products with substantially less employment than while production takes

place. Hence, the mapping between the model and the data is likely to be more

accurate if we use the market share of an establishment a few years after the firm

has appeared in the database.

Furthermore, note that the market share used in our approach is supposed to

reflect true quality-adjusted prices. However in reality plants may take time to

accumulate customers and market share—even conditional on the price, quality,

and variety of their products. Finally, as argued above, the number of product

per plant is more likely to stay constant some years after its birth.

All of these reasons lead us to map B into a year in the dataset plus k ≥ 0

years of lag. More formally, if Bd denotes the first year the plant appears in the

database, we map B into Bd+k, where we use k = 5 in our baseline specification.

Haltiwanger et al. (2013) find that “the fastest-growing continuing firms are young

firms under the age of 5” (see their Figure 4B) and the same is true at the plant

level. Hence, our baseline specification of a 5-year lag looks reasonable, though

we check the robustness of this assumption in Section 3.1.4

It is important to note that, although we use the market share with a lag,

this is done to obtain a measure of market share that is more tightly related

to the quality-adjusted price of new plants. If a new plant produces and sells a

new product but sales and employment are low in the beginning and reach its true

potential only after some time, we use in our baseline specification the information

of employment after 5 years to assess the quality of the product. By abstracting

from plants that enter and exit within the 5 year window the applied lag makes

our approach also more robust to short run churning in the labor market that

might be subject to cyclical taste shifts.

Finally, to quantify missing growth we need to parametrize the elasticity of

substitution. As our baseline value we choose σ = 4 based on Redding and

Weinstein (2016) and Hottman et al. (2016) and the robustness of our results
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with respect to this choice is documented in Section 3.1.4.

3.1.3 The market share of missing growth: results

It is our explicit goal to quantify missing growth in the aggregate economy and over

a time horizon of several decades. For these reasons we base our market share

approach estimates of missing growth on the Longitudinal Business Database

(LBD), which covers all nonfarm business sector plants with at least one employee.

We use this employment/payroll information to infer the dynamics in SIt,t.

Our data comes from LBD data for the period 1983–2013. LBD contains data

on employment and payroll going back to 1976, although the payroll data is only

clean from 1989. Also, although the LBD starts in 1976, we find missing growth

estimates that use the 1976 to 1977 longitudinal link are 3 to 4 times larger than

subsequent years. Our conjecture is that this is due to longitudinal linking issues

in 1976 and 1977 years of the LBD (see Table 2 of Jarmin and Miranda, 2002).

Hence we use the LBD employment data from 1977 onward. For our benchmark

with 5 years lag, 1983 is the earliest year we can calculate missing growth (market

share growth of survivors between 1982 and 1983) because we use plants that have

been in the data for at least 5 years.

To match our LBD sample, we use BLS measured TFP growth for the nonfarm

private business sector from 1983–2013.18 We put TFP in labor-augmenting form

and make sure to not net out the BLS estimates of the contribution of R&D and

intellectual property to TFP growth.

Table 1 shows the results for missing growth of our market share approach in

annualized percentage points. The numbers in this table are based on our baseline

specification with σ = 4 and k = 5. We find on average 0.56 percentage points of

missing growth per year over the overall period 1983–2013. When we decompose

the period into sub-periods we see that missing growth has not declined. In

particular, compared to the previous sub-periods, missing growth is on average

the highest during the period 2006–2013.19

Our calculation of missing growth does not use data on measured growth. To

give a sense of the magnitude of our results, we compare our results to the BLS

18The BLS multifactor productivity series uses real output growth from the BEA. Most
of BEA’s prices comes from the BLS (see U.S. Bureau of Economic Analysis, 2014). So the
measurement error we identify applies to the BEA series even if the BEA does not directly use
the CPI to construct real output growth.

19See our online appendix for missing growth in manufacturing and non-manufacturing sec-
tors.
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Table 1: Market share approach

Missing Growth in ppt. per year

1983–2013 0.56

1983–1995 0.60

1996–2005 0.41

2006–2013 0.69

Notes: This table presents the baseline missing growth estimates for the pe-
riod 1983–2013 (and different sub-periods) using the market share approach
in Proposition 6. The growth numbers are expressed in (average) percentage
points per year. The market share is measured as the employment share
of plants taken from the Census’ Longitudinal Business Database (LBD) as
described in (28). These baseline results assume a lag k = 5 and an elasticity
of substitution σ = 4.

TFP growth series which, as mentioned earlier, we express in labor-augmenting

terms. Table 2 shows the implied true productivity growth figures compared with

their measured productivity growth counterparts. True productivity growth is

constructed by adding our missing growth to the BLS TFP series. Since measured

TFP is lower in 2006–2013 whereas missing growth is the largest in this sub-period,

missing growth expressed as a fraction of true growth is remarkably high in the

last sub-period. Hence the increase in missing growth can partially explain the

decrease in measured TFP growth since the mid 2000s. Measured growth declined

from 2.65% per year in the 1996–2005 period to 0.90% per year in the post 2005

period. Of this 1.75 percentage points decline, we find however that only 0.28

percentage points is due to an increase in the overstatement of inflation.

3.1.4 The market share of missing growth: robustness and discussion

In this section we show how our main results of missing growth are affected by

alternative assumptions about the lag of measured market shares, the elasticity

of substitution, as well as using payroll instead of employment data.
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Table 2: Measured vs. True Growth with the Market Share approach

Measured Growth “True” Growth Missing Growth

1983–2013 1.93 2.49 0.56

1983–1995 2.01 2.61 0.60

1996–2005 2.65 3.06 0.41

2006–2013 0.90 1.59 0.69

Notes: This table presents measured growth, true growth, missing growth and the corresponding
share of total growth that is missed by the statistical office for the whole period 1983–2013 as well as
for different sub-periods. Measured, true and missing growth are expressed in (average) percentage
points per year. The missing growth is the same as in Table 1. Measured growth is calculated as
the BLS MFP series + R&D contribution expressed in labor-augmenting terms. True growth is
the sum of measured growth and missing growth.

Payroll as market size Table 3 shows resulting missing growth when payroll

instead of employment shares are used to measure the relative market shares.

The payroll data allows us to do this only since 1989 onward. The estimates show

slightly larger but overall comparable numbers of missing growth.

Different lag k Our baseline results in Table 1 uses a lag k = 5. While we

believe that this is a reasonable assumption it is nevertheless interesting to see

how the results are affected by this choice. Table 4 shows the main results for

missing growth for alternative lag specification of k = 0. For k = 0 missing

growth decreases significantly (in particular in the period 2006–2013). However,

though not reported in Table 4, for k = 3 we obtain estimates of missing growth

of a similar order of magnitude to k = 5. Also, increasing k to 7 years increases

missing growth slightly compared to k = 5.

Different elasticities of substitution Table 5 shows the main results under

different elasticities of substitution. The estimate for missing growth monotoni-

cally decreases in σ but remains in a similar order of magnitude for small variations

in the elasticity of substitution.
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Table 3: Different measures of market share

Employment Payroll

1989–2013 0.60 0.72

1989–1995 0.77 0.97

1996–2005 0.41 0.43

2006–2013 0.69 0.83

Notes: This table presents missing growth estimates for the period 1989–
2013 as well as different sub-periods using employment or payroll data to
measure the market share. The growth numbers are expressed in (average)
percentage points per year. The estimates based on employment data are
identical to the baseline results in Table 1 and σ = 4 and k = 5 is assumed
throughout the table.

Declining dynamism and missing growth One may wonder why we get

missing growth estimates that remain high, even though creative destruction as

measured by the rates of entry, exit and job-reallocation are known to have de-

clined continuously over the whole period (declining dynamism as documented by

Decker et al. 2014). The answer is two-fold. First, we look at plants (establish-

ments) not firms, with the assumption of one (or a constant number) of product(s)

per plant. Second, our market share equation for missing growth corresponds to

the net job creation by entry: indeed, the growth of survivors’ market share when

market share is measured by employment, is captured by the difference between

the job creation rate by new plants and the job destruction rate by exiting plants;

and Figure 1 indeed shows no trend in the net job creation rate of plants over

the period 1977–2014. Finally, we look at market shares five years after the plant

appears in our dataset.

Table 6 compares the missing growth estimates based on plants’ market shares

with those based on firms’ market shares: we see that missing growth estimates

drop dramatically when moving from plants to firms, and become negative as of

1996. This is not surprising: the former stems from the fact that new plants in

existing firms are typically bigger than new plants in new firms, and we are not

picking up this size difference when looking at firms instead of plants; the latter is

25



Aghion, Bergeaud, Boppart, Klenow, and Li

Table 4: Different lag lengths k

k = 5 k = 0

1983–2013 0.56 0.20

1983–1995 0.60 0.28

1996–2005 0.41 0.20

2006–2013 0.69 0.07

Notes: This table presents missing growth estimates for the
whole 1983–2013 period (as well as different sub-periods) using
different assumptions about the lag k. The growth numbers are
expressed in (average) percentage points per year. The results
with k = 5 are identical to the results in Table 1. The elasticity
of substitution, σ, is taken equal to 4 throughout the table.

Figure 1: Missing growth and declining dynamism
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Table 5: Different elasticities σ

Missing Growth

σ = 3 σ = 4 σ = 5

1983–2013 0.84 0.56 0.42

1983–1995 0.90 0.60 0.45

1996–2005 0.62 0.41 0.31

2006–2013 1.04 0.69 0.52

Notes: This table presents missing growth estimates for the whole 1983–2013
period (as well as different sub-periods) using different assumptions about the
elasticity of substitution, σ. The growth numbers are expressed in (average)
percentage points per year. The results with σ = 4 are identical to the results in
Table 1. The lag, k, is taken equal to 5 years throughout the table.

simply due to the fact that the net entry rate for firms has fallen more over time

than the net entry rate for plants.

3.2 The indirect inference method

In this subsection we rely on the algorithm in Garcia-Macia et al. (2016), hence-

forth GHK, to estimate the arrival rates and step sizes of the various types of

innovation. This affords another way to estimate missing growth. Key advan-

tages of this indirect inference method are that: (i) we need not assume that

creative destruction (CD) and new product varieties (NV) only come from new

plants: incumbent plants may also produce CD or NV innovations; (ii) we can de-

compose missing growth into its CD and NV components, using the arrival rates

and step sizes of the various kinds of innovations; and (iii) we allow the possibility

of products disappearing because of obsolescence.

GHK use indirect inference to estimate the step size and arrival rate of var-

ious types of innovation. They assume that own innovation (OI) and creative

destruction (CD) have the same step size. They fit aggregate TFP growth and

mean employment per firm exactly. They put equal weight on fitting other mo-

ments, in particular: the standard deviation of log employment across firms in
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Table 6: Missing Growth using Plants vs. Firms

Plant level Firm level

1983–2013 0.56 0.08

1983–1995 0.60 0.29

1996–2005 0.41 -0.03

2006–2013 0.69 -0.14

Notes: The entries are missing growth in percentage points per year. The
results at the plant level are identical to the results in Table 1. σ = 4 and
k = 5 are assumed throughout.

the cross-section, minimum employment of a firm (one worker), the percent of

employment at young firms (firms less than 5 years old), the overall job creation

rate, the overall job destruction rate, the percent of firms with job creation less

than 1 (which corresponds to firms who triple in size over a five year period),

and the growth rate of the number of firms (which is equal to the growth rate

of employment in the model). These data moments are averages calculated from

the LBD for two time periods, 1976–1986 and 2003–2013. With their estimated

parameters in hand, GHK decompose growth into respective contributions from

new varieties, incumbent innovation on their own products, creative destruction

by incumbents, and creative destruction by entering firms.

The original GHK algorithm assumes that measured growth equals true growth.

It chooses parameters so that true growth, as given by equation (29) below, equals

measured growth in the data. We modify the GHK algorithm to allow measured

growth to differ from true growth. Specifically, we choose parameters such that

measured growth, according to equation (30) below, matches the growth rate

observed in the data.

The original GHK codes estimates 5-year arrival rates and step sizes. Since

BLS substitutions and imputation happen at the monthly or bimonthly frequency

(depending on the item), we run a version of the GHK model that estimates

bimonthly arrival rates and step sizes. For a given set of parameter estimates,

we check if measured growth in the model matches our empirical growth targets
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(1.03% for 1976–1986 and 1.44% for 2003–2013). We iterate on parameter values

until the measured growth from the model matches the data growth targets. The

measured growth target is the same series as that used in the market share section.

In addition to the distinction between measured and true growth, our model

in Section 2 differs from the GHK model in a few details. They keep track of firms

with multiple products, so they estimate rates creative destruction and new variety

creation separately for entrants and incumbents. They also allow for endogenous

retirement of products due to an overhead cost denominated in labor: firms retire

products whose quality relative to the average quality is below a cutoff. Rather

than a fixed step size, quality innovations are drawn from a Pareto distribution.

They assume the same Pareto shape parameter (and hence average step size)

for quality innovations from own innovation as from creative destruction. New

varieties are drawn from a scaled version of the existing quality distribution.

Using the notation from our model, in GHK true growth g is given by

(1 + g)σ−1 = (1− δoψ)
{

[λi(1− λe,d − λi,d) + (λe,d + λi,d)] (γσ−1
i − 1) + 1

}
+(λi,n + λe,n)γσ−1

n

(29)

δo is the share of products in the previous period who quality falls below the

cutoff for obsolescence, and ψ is the average quality of such below-cutoff products

relative to the average quality.20 λi is the share of products that are not obsolete

and did not experience creative destruction who did experience an innovation by

the incumbent producer. λe,d is the share of non-obsolete products with entrant

CD and λi,d is the share of non-obsolete products with incumbent CD. λi,n + λe,n

is the mass of new varieties from incumbents and entrants relative to the the

mass of products in the previous period. γi and γd are the average step size of

own innovation and creative destruction, respectively. As in GHK, we assume the

two step sizes are the same, which is why only γi appears in equation (29). γn

is the average quality of a new variety relative to the average quality of varieties

produced in the previous period. The term 1− δψ adjusts for endogenous loss of

varieties due to obsolescence.

The equation for measured growth ĝ is the same in the modified GHK model

20Formally, δo =

∫
q(j)<q̄t,q(j)∈Ωt

1 dj and ψδo =

∫
q<q̄t,q∈Ωt

qσ−1
t (j)dj∫

q∈Ωt

qσ−1
t (j)dj

where Ωt denotes the

set of products produced in period t.
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as in our Section 2 model, as before assuming the BLS accurately measures the

arrival rate and average step size of own innovations:

(1 + ĝ)σ−1 = 1 + λi(γ
σ−1
i − 1) (30)

The top panel of Table 7 displays the parameter definitions and their estimated

values for each of 1976–1986 and 2003–2013. The bottom panel gives rates of

measured, true, and missing growth, respectively. Our missing growth estimates

with the indirect inference approach here are similar to what we found using

the market share approach: 0.52 percent (versus 0.46) over 1983–1986, and 0.42

percent (versus 0.68 percent) over 2003–2013.21

With the indirect inference approach here, we can also decompose missing

growth into that from new varieties vs. creative destruction. We calculate missing

growth due to creative destruction by taking the difference between measured

growth and growth that results when we set the arrival rates for new varieties

(λi,n + λe,n) to zero. We find that almost all of the missing growth is due to

creative destruction: 0.41 percentage points from CD (vs. 0.52 total) over 1976-

1986, and 0.33 percentage points from CD (vs. 0.42 total) over 2003–2013.

21We compare the market share results from 1983-1986 to GHK’s results from 1976–1986
because of data availability. Our LBD series starts in 1978 and we use plants that have been in
the data for at least 5 years. Hence 1983 is the earliest year we can calculate missing growth
using the market share approach.
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Table 7: Parameters and missing growth with indirect inference

Parameter Definition 1976-1986 2003-2013

δo Share of products in t going obsolete in t+ 1 0.000 0.000
λi,d Probability of a product having incumbent

CD, conditional on not becoming obsolete
0.003 0.002

λe,d Probability of a product having entrant CD
conditional on not becoming obsolete

0.007 0.004

λi Probability of incumbent OI conditional on
not becoming obsolete and creatively de-
stroyed

0.024 0.027

λi,n + λe,n Mass of new varieties relative to number of
varieties

0.004 0.002

γi, γd Step size of CD and OI innovation 1.014 1.017
γn Step size of NV innovation 0.289 0.376
ψ Step size of obsolescent product 0.079 0.056
σ Elasticity of substitution 4 4

A. measured growth per year (data) 1.03% 1.44%
B. true growth per year (model) 1.55% 1.86%
C. missing growth per year (B-A) 0.52% 0.42%
D. growth with no new varieties (model) 1.44% 1.77%
E. missing growth due to CD per year (D-A) 0.41% 0.33%

Notes: Estimated value of parameters from running the algorithm from Garcia-Macia et al. (2016) on two sample:
1976-1986 and 2003-2013. The algorithm has been extended to fit our hypothesis as explained in the text.
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4 Conclusion

In this paper we developed a Schumpeterian growth model with incumbent and

entrant innovation to assess the unmeasured TFP growth resulting from creative

destruction and the use of imputation in calculating inflation rates. Our model

generated explicit expressions for missing TFP growth as a function of the fre-

quency and size of creative destruction vs. other types of innovation.

Based on the model, using U.S. Census data on all nonfarm businesses, we

explored two alternative approaches to estimate the magnitude of missing growth

from creative destruction for the U.S. from 1983 to 2013. The first approach used

the employment shares of surviving, entering and exiting plants. The second ap-

proach applied the indirect inference of Garcia-Macia et al. (2016) to firm-level

data. The former, “market share” approach is simple, intuitive and easy to repli-

cate for different economies, but assumes all creative destruction occurs through

new plants and cannot separate out missing growth from expanding variety. The

latter “indirect inference” approach is more involved and less intuitive, but does

not require creative destruction to occur through new plants. Moreover the second

approach allows us to decompose missing growth into that from creative destruc-

tion vs. expanding variety.

We found that: (i) missing growth from imputation is substantial — about 0.5

percentage points per year on average when using both approaches; and (ii) it is

mostly due to creative destruction. According to our estimates, missing growth

has not declined over the past thirty years; since measured growth has declined

recently, the fraction of true growth missed may have risen.

The missing growth we identify is likely to be exacerbated when there is error

in measuring quality improvements by incumbents on their own products. That

is, we think missing growth from imputation is over and above (and amplified by)

the quality bias emphasized by the Boskin Commission.22

Our analysis could be extended in several interesting directions. One would

be to look at missing growth for particular sectors of the economy, such as goods

vs. services. Another would be to look at missing growth in countries other than

the U.S. A third extension would be to revisit optimal innovation policy. Based

on Atkeson and Burstein (2015), the optimal subsidy to R&D may be higher

22The BLS and BEA recently estimated quality bias from health and ICT alone to be about
0.4 percentage points per year from 2000–2015 (Groshen et al., 2017).
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because true growth is higher, or lower because more growth comes from creative

destruction with its attendant business stealing.

A natural question is how statistical offices should alter their methodology

in light of our results, presuming our estimates are sound. The market share

approach would be hard to implement without a major expansion of BLS data

collection to include market shares for entering, surviving, and exiting products

in all sectors. The indirect inference approach is even less conducive to high fre-

quency analysis. A feasible compromise might be for the BLS to impute inflation

for disappearing products based on inflation only for those surviving products

that have been innovated upon. This would assume that the step size is the same

for creative destruction as for own innovation by incumbents, and that there is no

quality bias in the BLS estimate of the latter.23

Finally, we think it is useful to accurately measure growth, even if it only

raises growth by the same percentage points over time. We illustrate this with

four examples. First, it means that ideas are not getting as hard to find as official

statistics suggest, with implications for the production of ideas and future growth

(Gordon, 2012; Bloom et al., 2016). Second, the U.S. Federal Reserve might

wish to raise its inflation target to come closer to achieving quality-adjusted price

stability. Third, a higher fraction of children may enjoy a better quality of life than

their parents (Chetty et al., 2016). Fourth, as stressed by the Boskin Commission,

U.S. tax brackets and Social Security benefits are indexed to measured inflation,

the flip side of measured growth.

23Erickson and Pakes (2011) suggest that, for those categories in which data are available to
do hedonics, the BLS could improve upon the imputation method by using hedonic estimation
that corrects for both the selection bias associated with exit and time-varying unmeasured
characteristics.
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Appendix on imputation in the CPI

One of the most difficult problems when compiling a price index is to accurately

adjust for quality changes. Let v denote an item produced at date t and which is

replaced by a new item v + 1 at date t + 1. To integrate the corresponding item

change in the overall price index, the statistical office needs to infer a value for

either price P (v + 1, t) or price P (v, t + 1) when it has information only about

P (v, t) and P (v+1, t+1). According to the U.S. General Accounting Office (1999)

and to the Handbook of Methods from U.S. Bureau of Labor Statistics (2015b),

the BLS largely chooses among four possible courses of action to handle these

item substitutions.24

The first course of action simply involves setting

P (v + 1, t) = P (v, t).

This no-adjustment strategy is pursued by the BLS when it deems the new and

old item as comparable, by which the BLS means that the old and new items are

essentially the same, so that no quality difference exists between the two items.

The interesting case is when the BLS judges the new and old items to be non-

comparable. Then the BLS typically chooses between three remaining strategies.

First is direct quality adjustment. This is when the BLS can perform hedonic

regressions or has information on manufacturers’ production costs. Direct quality

adjustment involves the BLS setting

P (v + 1, t) = P (v, t) ·QA(t).

Viewed through the lens of our model, BLS quality adjustments are an estimate

of the step size of innovations.

For those noncomparable substitutions where the BLS lacks the information

to make direct quality adjustments, it resorts to class-mean imputation or linking.

Class-mean imputation is based on the rate of price changes experienced by other

item substitutions — those which the BLS considers comparable or can directly

adjust. Linking, meanwhile, uses the average rate of price change among items

without substitution, items with comparable substitutions, and items with non-

comparable substitutions subject to direct quality adjustments. Both imputations

24We use italics to highlight terminology used by the BLS.
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are usually carried out within the item’s category or category-region.

The U.S. General Accounting Office (1999) usefully reports statistics on the

frequency with which each method was used by the BLS for item substitutions in

1997. In that year, the BLS judged 58% of item substitutions to be comparable;

the prices for these items entered the CPI without adjustment. The remaining

42% (the noncomparable substitutions) broke down as follows:25

• 31.1% direct quality adjustments

• 33.4% class-mean imputations

• 35.5% linking.

To estimate the fraction of creative destruction innovations that were effec-

tively subject to imputation based on all surviving items (those not creatively

destroyed), we make the following three assumptions:

1. Comparable item substitutions do not involve any innovation.

2. Direct adjustments are implemented when incumbents improve their own

products (OI).

3. Creative destruction (CD) results in imputation by class-mean or linking in

the proportions stated above.

Under these assumptions, we estimate that creative destruction (CD) inno-

vations were treated with the equivalent of all-surviving-items imputation 92%

of the time in 1997. To see why, let D, C, and L denote the numbers of item

substitutions subject to direct adjustment, class-mean imputation, and linking,

respectively. Let N denote the number of comparable item substitutions.

The number of item substitutions for which some form of imputation is done

is L + C. The imputation in the two strategies, however, is based on different

sets of products. Whereas linking imputes from all surviving products (as in our

theoretical model), class-mean imputation is based on other substitutions. We are

looking for the fraction E of the products L+C for which imputation is effectively

based on all surviving products, as opposed to just those surviving products with

25From conversations with BLS personnel, our understanding is that class-mean imputations
and linking have been deployed with similar frequency in the years since 1997.
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incumbent own innovations (fraction 1 − E). These include all cases of linking

plus a fraction (call it x) of class-mean imputations:

E =
L+ x · C
L+ C

. (31)

How do we determine x? Class-mean imputations C use a weighted average

for inflation from item substitutions for which there was either no adjustment

(fraction N/(D + N)) or a direct adjustment (fraction D/(D + N)). Since 42%

of all substitutions in 1997 were noncomparable (31.1% of which were direct ad-

justments) and 58% of all substitutions were comparable, we get:

D

D +N
=

0.311 · 0.42

0.311 · 0.42 + 0.58
≈ 0.184.

Using the Garcia-Macia et al. (2016) algorithm we estimated the fraction of

incumbent own-innovations (OI) among surviving products (those not creatively

destroyed) to be λi ≈ 2.4% at a bimonthly rate. If the fraction of direct quality

adjustments in class-mean imputations was also 2.4%, we would say class-mean

imputation is just like linking (imputation based on all products not creatively

destroyed). Because the fraction of direct quality adjustments in class-mean im-

putations (at 18.4%) was higher than 2.4%, we infer that class-mean imputation

puts extra weight on OI:

D

D +N
= x · λi + (1− x) · 1, (32)

where x is the weight on all surviving items (only fraction λi of which were inno-

vations) and 1−x is the weight on those surviving products which did experience

incumbent innovations. Rearranging (32) and using the above percentages we get

x =
N/(D +N)

1− λi
≈ 0.816

1− 0.024
≈ 83.6%.

Thus, class-mean imputation effectively puts 83.6% weight on all surviving items

and 16.4% weight on innovating survivors. Given that class-mean imputation and

linking were about equally common, we estimate that the BLS used imputation

based on all surviving items the equivalent of 92% of the time in 1997. More
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exactly, we substitute the numerical values for x, L and C into (31) to get

E =
L+ x · C
L+ C

≈ 0.355 + 0.836 · 0.334

0.355 + 0.334
≈ 0.920.
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